- ID:
- ivo://CDS.VizieR/J/MNRAS/371/252
- Title:
- Southern B and Be stars
- Short Name:
- J/MNRAS/371/252
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spectroscopic monitoring of 141 southern field B-type stars, 114 of them known to exhibit the Be phenomenon, allowed the estimation of their projected rotational velocities, effective temperatures and superficial gravities from both line and equivalent width fitting procedures. Stellar ages, masses and bolometric luminosities were derived from internal structure models. Without taking into account the effects of gravity darkening, we note the occurrence of the Be phenomenon in later stages of main-sequence phase.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/547/A91
- Title:
- Spectroscopic analysis of 348 red giants
- Short Name:
- J/A+A/547/A91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present basic atmospheric parameters (Teff, logg, vt, and [Fe/H]) as well as luminosities, masses, radii, and absolute radial velocities for 348 stars, presumably giants, from the ~1000 star sample observed within the Penn State-Torun Centre for Astronomy Planet Search (PTPS) with the High Resolution Spectrograph of the 9.2m Hobby-Eberly Telescope. The stellar parameters (luminosities, masses, radii) are key to properly interpreting newly discovered low-mass companions, while a systematic study of the complete sample will create a basis for future statistical considerations concerning the appearance of low-mass companions around evolved low- and intermediate-mass stars.
- ID:
- ivo://CDS.VizieR/J/AJ/152/40
- Title:
- Spectroscopy of 341 bright A- and B-type stars
- Short Name:
- J/AJ/152/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Binary stars and higher-order multiple systems are a ubiquitous outcome of star formation, especially as the system mass increases. The companion mass-ratio distribution is a unique probe into the conditions of the collapsing cloud core and circumstellar disk(s) of the binary fragments. Inside a~1000AU the disks from the two forming stars can interact, and additionally companions can form directly through disk fragmentation. We should, therefore, expect the mass-ratio distribution of close companions (a<~100AU) to differ from that of wide companions. This prediction is difficult to test using traditional methods, in particular, with intermediate-mass primary stars, for a variety of observational reasons. We present the results of a survey searching for companions to A- and B-type stars using the direct spectral detection method, which is sensitive to late-type companions within ~1'' of the primary and which has no inner working angle. We estimate the temperatures and surface gravity of most of the 341 sample stars and derive their masses and ages. We additionally estimate the temperatures and masses of the 64 companions we find, 23 of which are new detections. We find that the mass-ratio distribution for our sample has a maximum near q~0.3. Our mass-ratio distribution has a very different form than in previous works, where it is usually well-described by a power law, and indicates that close companions to intermediate-mass stars experience significantly different accretion histories or formation mechanisms than wide companions.
- ID:
- ivo://CDS.VizieR/J/AJ/149/103
- Title:
- Spectroscopy of candidate YSOs in Serpens
- Short Name:
- J/AJ/149/103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have completed an optical spectroscopic survey of a sample of candidate young stars in the Serpens Main star-forming region selected from deep B, V, and R band images. While infrared, X-ray, and optical surveys of the cloud have identified many young stellar objects (YSOs), these surveys have been biased toward particular stages of pre-main sequence evolution. We have obtained over 700 moderate resolution optical spectra that, when combined with published data, have led to the identification of 63 association members based on the presence of H{alpha} in emission, lithium absorption, X-ray emission, a mid-infrared excess, and/or reflection nebulosity. Twelve YSOs are identified based on the presence of lithium absorption alone. An additional 16 objects are classified as possible association members and their pre-main sequence nature is in need of confirmation. Spectral types along with V and R band photometry were used to derive effective temperatures and bolometric luminosities for association members to compare with theoretical tracks and isochrones for pre-main sequence stars. An average age of 2Myr is derived for this population. When compared to simulations, there is no obvious evidence for an age spread when considering the major sources of uncertainties in the derived luminosities. However when compared to the young cluster in Ophiuchus, the association members in Serpens appear to have a larger spread in luminosities and hence ages which could be intrinsic to the region or the result of a foreground population of YSOs associated with the Aquila Rift. Modeling of the spectral energy distributions from optical through mid-infrared wavelengths has revealed three new transition disk objects, making a total of six in the cluster. Echelle spectra for a subset of these sources enabled estimates of vsini for seven association members. Analysis of gravity-sensitive lines in the echelle and moderate resolution spectra of the association members indicate surface gravities consistent with dwarf or sub-giant stars.
- ID:
- ivo://CDS.VizieR/J/AJ/153/188
- Title:
- Spectroscopy of the foreground population in Orion A
- Short Name:
- J/AJ/153/188
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018-0.030 M_{sun}_, which harbors a flaring disk. Using the H{alpha} emission line, we characterize the accretion activity of the sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46%+/-7% versus 73%+/-9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1-2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.
- ID:
- ivo://CDS.VizieR/J/ApJ/768/25
- Title:
- Spitzer and Herschel observations of debris disks
- Short Name:
- J/ApJ/768/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {prop.to}t^-0.35^ at its fastest point (where t is time) for our reference model, while the dust mass and its proxy -the infrared excess emission- fades significantly faster ({prop.to}t^-0.8^). These later level off to a decay rate of M_tot_(t){prop.to}t^-0.08^ and M_dust_(t) or L_ir_(t){prop.to}t^-0.6^. This is slower than the {prop.to}t.^-1^ decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100{mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24{mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100{mu}m) at certain age regimes. We show general agreement at 24{mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration of the full parameter space to observations. Amongst other results, we show that erosive collisions are dominant in setting the timescale of the evolution and that planetesimals on the order of 100 km in diameter are necessary in the cascades for our population synthesis models to reproduce the observations.
- ID:
- ivo://CDS.VizieR/J/ApJ/775/55
- Title:
- Spitzer IR excesses in A-K stars
- Short Name:
- J/ApJ/775/55
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processes (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.
- ID:
- ivo://CDS.VizieR/J/ApJ/798/87
- Title:
- Spitzer/IRS debris disk catalog. II.
- Short Name:
- J/ApJ/798/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog (Chen et al. 2014, J/ApJS/211/25). We have discovered 10 and/or 20 {mu}m silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 {mu}m observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q=3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a_min_, increases with stellar luminosity, L_*_, but the dependence of a_min_ on L_*_ is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.
- ID:
- ivo://CDS.VizieR/J/ApJ/762/128
- Title:
- Spitzer/IRS disk parameters in Serpens
- Short Name:
- J/ApJ/762/128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spectral energy distributions are presented for 94 young stars surrounded by disks in the Serpens Molecular Cloud, based on photometry and Spitzer/IRS spectra. Most of the stars have spectroscopically determined spectral types. Taking a distance to the cloud of 415pc rather than 259pc, the distribution of ages is shifted to lower values, in the 1-3Myr range, with a tail up to 10Myr. The mass distribution spans 0.2-1.2M_{sun}_, with median mass of 0.7M_{sun}_. The distribution of fractional disk luminosities in Serpens resembles that of the young Taurus Molecular Cloud, with most disks consistent with optically thick, passively irradiated disks in a variety of disk geometries (L_disk_/L_star_~0.1). In contrast, the distributions for the older Upper Scorpius and {eta} Chamaeleontis clusters are dominated by optically thin lower luminosity disks (L_disk_/L_star_~0.02). This evolution in fractional disk luminosities is concurrent with that of disk fractions: with time disks become fainter and the disk fractions decrease. The actively accreting and non-accreting stars (based on H{alpha} data) in Serpens show very similar distributions in fractional disk luminosities, differing only in the brighter tail dominated by strongly accreting stars. In contrast with a sample of Herbig Ae/Be stars, the T Tauri stars in Serpens do not have a clear separation in fractional disk luminosities for different disk geometries: both flared and flat disks present wider, overlapping distributions. This result is consistent with previous suggestions of a faster evolution for disks around Herbig Ae/Be stars. Furthermore, the results for the mineralogy of the dust in the disk surface (grain sizes, temperatures and crystallinity fractions, as derived from Spitzer/IRS spectra) do not show any correlation to either stellar and disk characteristics or mean cluster age in the 1-10Myr range probed here. A possible explanation for the lack of correlation is that the processes affecting the dust within disks have short timescales, happening repeatedly, making it difficult to distinguish long-lasting evolutionary effects.
- ID:
- ivo://CDS.VizieR/J/ApJ/880/9
- Title:
- Spitzer obs. of YSOs in the SMOG field
- Short Name:
- J/ApJ/880/9
- Date:
- 07 Mar 2022 07:09:50
- Publisher:
- CDS
- Description:
- In this paper we undertake a study of the 21deg^2^ SMOG field, a Spitzer cryogenic mission Legacy program to map a region of the outer Milky Way toward the Perseus and outer spiral arms with the IRAC and MIPS instruments. We identify 4648 YSOs across the field. Using the DBSCAN method, we identify 68 clusters or aggregations of YSOs in the region, having eight or more members. We identify 1197 Class I objects, 2632 Class II objects, and 819 Class III objects, of which 45 are candidate transition disk objects, utilizing the MIPS 24 photometry. The ratio of YSOs identified as members of clusters was 2872/4648, or 62%. The ratios of Class I to Class II YSOs in the clusters are broadly consistent with those found in the inner Galactic and nearby Gould Belt young star formation regions. The clustering properties indicate that the protostars may be more tightly bound to their natal sites than the Class II YSOs, and the Class III YSOs are generally widely distributed. We further perform an analysis of the WISE data of the SMOG field to determine how the lower resolution and sensitivity of WISE affects the identification of YSOs as compared to Spitzer: we identify 931 YSOs using combined WISE and 2MASS photometry, or 20% (931/4648) of the total number identified with Spitzer. Performing the same clustering analysis finds 31 clusters that reliably trace the larger associations identified with the Spitzer data. Twelve of the clusters identified have previously measured distances from the WISE HII survey. SEDFitter modeling of these YSOs is reported, leading to an estimation of the initial mass function in the aggregate of these clusters that approximates that found in the inner Galaxy, implying that the processes behind stellar mass distribution during star formation are not widely affected by the lower density and metallicity of the outer Galaxy.