- ID:
- ivo://CDS.VizieR/J/A+A/585/A5
- Title:
- Exoplanet hosts/field stars age consistency
- Short Name:
- J/A+A/585/A5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photometric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform derivation of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of logR'_HK_ and vsini, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age. Working with TPH, the observational stellar mean density {rho}_*_ allows us to compute stellar luminosity even if the distance is not available, by combining {rho}_* with the spectroscopic logg. The median value of the TPH ages is ~5Gyr. Even if this sample is not very large, however the result is very similar to what we found for the sample of spectroscopic hosts, whose modal and median values are [3, 3.5)Gyr and ~4.8Gyr, respectively. Thus, these stellar samples suffer almost the same selection effects. An analysis of MS stars of the solar neighbourhood belonging to the same spectral types bring to an age distribution similar to the previous ones and centered around solar age value. Therefore, the age of our Sun is consistent with the age distribution of solar neighbourhood stars with spectral types from late F to early K, regardless of whether they harbour planets or not. We considered the possibility that our selected samples are older than the average disc population.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/237/38
- Title:
- Extended abundance analysis of KOIs
- Short Name:
- J/ApJS/237/38
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Accurate stellar parameters and precise elemental abundances are vital pieces to correctly characterize discovered planetary systems, better understand planet formation, and trace galactic chemical evolution. We have performed a uniform spectroscopic analysis for 1127 stars, yielding accurate gravity, temperature, and projected rotational velocity in addition to precise abundances for 15 elements (C, N, O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, and Y). Most of the stars in this sample are Kepler Objects of Interest, observed by the California-Kepler Survey, and include 1003 stars hosting 1562 confirmed planets. This catalog extends the uniform analysis of our previous catalog, bringing the total number of homogeneously analyzed stars to almost 2700 F, G, and K dwarfs. To ensure consistency between the catalogs, we performed an analysis of our ability to recover parameters as a function of signal-to-noise ratio (S/N) and present individual uncertainties as well as functions to calculate uncertainties for parameters derived from lower S/N spectra. With the updated parameters, we used isochrone fitting to derive new radii, masses, and ages for the stars. We use our abundance analysis to support the finding that the radius gap is likely a result of evolution rather than the result of primordial compositional differences between the two populations.
- ID:
- ivo://CDS.VizieR/V/137D
- Title:
- Extended Hipparcos Compilation (XHIP)
- Short Name:
- V/137D
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Extended Hipparcos Compilation (XHIP) cross-references the New Hipparcos Reduction (HIP2, Cat. I/311) with relatable data from a broad survey of presently available sources. The resulting collection uniquely assigns 116,096 spectral classifications, 46,392 radial velocities, and 19,097 iron abundances [Fe/H] to Hipparcos stars. Stellar classifications from SIMBAD and indications of multiplicity from either CCDM (Cat. I/274) or WDS (Cat. B/wds) are provided. Parameters for solar encounters and Galactic orbits are calculated for a subset of stars that can be made kinematically complete. Memberships in open clusters and stellar associations are assigned. We also provide stellar ages from The Geneva-Copenhagen survey of the Solar neighbourhood III (Cat. V/130), identifications of exoplanet host stars, and supplemental photometry from 2MASS (Cat. II/246) and SIMBAD.
- ID:
- ivo://CDS.VizieR/J/ApJ/822/86
- Title:
- False positive probabilities for Q1-Q17 DR24 KOIs
- Short Name:
- J/ApJ/822/86
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present astrophysical false positive probability calculations for every Kepler Object of Interest (KOI) --the first large-scale demonstration of a fully automated transiting planet validation procedure. Out of 7056 KOIs, we determine that 1935 have probabilities vespa (Morton T.D. 2015ascl.soft03011M), a publicly available Python package that is able to be easily applied to any transiting exoplanet candidate.
- ID:
- ivo://CDS.VizieR/J/AJ/160/217
- Title:
- 342 FGK-dwarfs ages using GALEX FUV magnitudes
- Short Name:
- J/AJ/160/217
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Stellar age cannot be directly measured, yet age determinations are fundamental to understanding the evolution of stars, planets, and galaxies. The work presented here builds upon the idea of a stellar-activity age. We utilized far-ultraviolet (FUV) photometry acquired by the Galaxy Evolution Explorer (GALEX) space telescope as an indicator of chromospheric activity to infer ages of late-F, G, and K type dwarf stars. We derived a purely empirical correlation between FUV magnitudes and stellar age in conjunction with (B-V) color. Our attention is restricted to Sun-like stars with color range 0.55<=(B-V)<=0.71 and absolute magnitude range 4.3<=MV<=5.3. The correlation is defined in terms of a FUV-excess parameter Q(FUV-B,B-V). We related stellar age, {tau}, to Q through the relation log_e_({tau})=log_e_(a)+bQ, where a and b are fit parameters and functions of (B-V). This correlation is functional up to 6Gyr for FGK dwarfs. With such a correlation, one only needs Johnson (B-V) and FUV measurements to estimate the stellar age for Population i dwarf stars of solar-like temperature and metallicity. Such a calibration has utility in population studies of FGK dwarfs for further understanding of the chemical evolution of the Milky Way. As an illustration of one such application, we have constructed activity and FUV-age distributions for a sample of thin and thick disk stars, as distinguished by their chemical abundances. Considerable overlap is found between the activity distribution and age range of the two populations. We discuss the possibility that some high-[{alpha}/Fe] thick disk stars were formed as a result of the accretion of dwarf galaxies as recently as 4Gyr ago.
- ID:
- ivo://CDS.VizieR/J/ApJ/864/71
- Title:
- Fluxes & physical param. of blended YSOs
- Short Name:
- J/ApJ/864/71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Despite significant evidence suggesting that intermediate- and high-mass stars form in clustered environments, how stars form when the available resources are shared is still not well understood. A related question is whether the initial mass function (IMF) is in fact universal across galactic environments, or whether it is an average of IMFs that differ, for example, in massive versus low-mass molecular clouds. One of the long-standing problems in resolving these questions and in the study of young clusters is observational: how to accurately combine multiwavelength data sets obtained using telescopes with different spatial resolutions. The resulting confusion hinders our ability to fully characterize clustered star formation. Here we present a new method that uses Bayesian inference to fit the blended spectral energy distributions and images of individual young stellar objects (YSOs) in confused clusters. We apply this method to the infrared photometry of a sample comprising 70 Spitzer-selected, low-mass (M_cl_<100M_{sun}_) young clusters in the galactic plane, and we use the derived physical parameters to investigate how the distribution of YSO masses within each cluster relates to the total mass of the cluster. We find that for low-mass clusters this distribution is indistinguishable from a randomly sampled Kroupa IMF for this range of cluster masses. Therefore, any effects of self-regulated star formation that affect the IMF sampling are likely to play a role only at larger cluster masses. Our results are also compatible with smoothed particle hydrodynamics models that predict a dynamical termination of the accretion in protostars, with massive stars undergoing this stopping at later times in their evolution.
- ID:
- ivo://CDS.VizieR/J/AJ/155/30
- Title:
- Fundamental parameters of 87 stars from the NPOI
- Short Name:
- J/AJ/155/30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the fundamental properties of 87 stars based on angular diameter measurements from the Navy Precision Optical Interferometer, 36 of which have not been measured previously using interferometry. Our sample consists of 5 dwarfs, 3 subgiants, 69 giants, 3 bright giants, and 7 supergiants, and span a wide range of spectral classes from B to M. We combined our angular diameters with photometric and distance information from the literature to determine each star's physical radius, effective temperature, bolometric flux, luminosity, mass, and age.
- ID:
- ivo://CDS.VizieR/J/A+A/620/A128
- Title:
- Gaia DR2 study of Herbig Ae/Be stars
- Short Name:
- J/A+A/620/A128
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use Gaia Data Release 2 (DR2, Cat. I/345) to place 252 Herbig Ae/Be stars in the HR diagram and investigate their characteristics and properties. For all known Herbig Ae/Be stars with parallaxes in Gaia DR2, we collected their atmospheric parameters and photometric and extinction values from the literature. To these data we added near- and mid-infrared photometry, collected Halpha emission line properties such as equivalent widths and line profiles, and their binarity status. In addition, we developed a photometric variability indicator from Gaia's DR2 information. We provide masses, ages, luminosities, distances, photometric variabilities and infrared excesses homogeneously derived for the most complete sample of Herbig Ae/Be stars to date. We find that high mass stars have a much smaller infrared excess and have much lower optical variabilities compared to lower mass stars, with the break at around 7M_{sun}_. Halpha emission is generally correlated with infrared excess, with the correlation being stronger for infrared emission at wavelengths tracing the hot dust closest to the star. The variability indicator as developed by us shows that approximately 25% of all Herbig Ae/Be stars are strongly variable. We observe that the strongly variable objects display doubly peaked Halpha line profiles, indicating an edge-on disk. The fraction of strongly variable Herbig Ae stars is close to that found for A-type UX Ori stars. It had been suggested that this variability is in most cases due to asymmetric dusty disk structures seen edge-on. The observation here is in strong support of this hypothesis. Finally, the difference in dust properties occurs at 7M_{sun}_, while various properties traced at UV/optical wavelengths differ at a lower mass, 3M_{sun}_. The latter has been linked to different accretion mechanisms at work whereas the differing infrared properties and photometric variabilities are related to different or differently acting (dust-)disk dispersal mechanisms.
- ID:
- ivo://CDS.VizieR/J/AJ/159/280
- Title:
- Gaia-Kepler stellar properties catalog.I. KIC stars
- Short Name:
- J/AJ/159/280
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- An accurate and precise Kepler Stellar Properties Catalog is essential for the interpretation of the Kepler exoplanet survey results. Previous Kepler Stellar Properties Catalogs have focused on reporting the best-available parameters for each star, but this has required combining data from a variety of heterogeneous sources. We present the Gaia-Kepler Stellar Properties Catalog, a set of stellar properties of 186301 Kepler stars, homogeneously derived from isochrones and broadband photometry, Gaia Data Release 2 parallaxes, and spectroscopic metallicities, where available. Our photometric effective temperatures, derived from g to Ks colors, are calibrated on stars with interferometric angular diameters. Median catalog uncertainties are 112K for Teff, 0.05dex for logg, 4% for R_*_, 7% for M_*_, 13% for {rho}_*_, 10% for L_*_, and 56% for stellar age. These precise constraints on stellar properties for this sample of stars will allow unprecedented investigations into trends in stellar and exoplanet properties as a function of stellar mass and age. In addition, our homogeneous parameter determinations will permit more accurate calculations of planet occurrence and trends with stellar properties.
- ID:
- ivo://CDS.VizieR/J/A+A/384/879
- Title:
- Galactic orbits of stars with planets
- Short Name:
- J/A+A/384/879
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have reconstructed the galactic orbits of the parent stars of exoplanets. For comparison, we have recalculated the galactic orbits of stars from the Edvardsson et al. (1993, Cat. <J/A+A/275/101>) catalog. A comparison between the two samples indicates that stars with planets are not kinematically peculiar. At each perigalactic distance stars with planets have a metallicity systematically larger than the average for the comparison sample. We argue that this result favors scenarios where the presence of planets is the cause of the higher metallicity of stars with planets.