- ID:
- ivo://CDS.VizieR/J/ApJ/735/L46
- Title:
- Spectroscopy of 64 K red giants
- Short Name:
- J/ApJ/735/L46
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan telescopes, we present detailed elemental abundances for 20 red giant stars in the outer Galactic disk, located at Galactocentric distances between 9 and 13kpc. The outer disk sample is complemented with samples of red giants from the inner Galactic disk and the solar neighborhood, analyzed using identical methods. For Galactocentric distances beyond 10kpc, we only find chemical patterns associated with the local thin disk, even for stars far above the Galactic plane. Our results show that the relative densities of the thick and thin disks are dramatically different from the solar neighborhood, and we therefore suggest that the radial scale length of the thick disk is much shorter than that of the thin disk. We make a first estimate of the thick disk scale length of L_thick_=2.0kpc, assuming L_thin_=3.8kpc for the thin disk. We suggest that radial migration may explain the lack of radial age, metallicity, and abundance gradients in the thick disk, possibly also explaining the link between the thick disk and the metal-poor bulge.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/123/2828
- Title:
- Spectroscopy of northern NLTT stars
- Short Name:
- J/AJ/123/2828
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present initial results of an all-sky search for late-type dwarfs within 20pc of the Sun using the New Luyten Two-Tenths (NLTT) catalog cross-referenced with the Two Micron All Sky Survey (2MASS) database. The results were obtained with low-resolution optical spectroscopic follow-up of candidate nearby stars as a preliminary test of our methodology. M_J_, derived using spectral indices, and 2MASS J are used to estimate distances. Out of the 70 objects observed, 28 are identified as previously unrecognized objects within 25pc of the Sun, and up to 19 of these are within 20pc. One, LP 647-13, is an M9-type dwarf at 10.5pc, making it one of the four closest M9 dwarfs currently known. We also discuss the chromospheric activity of the observed dwarfs.
- ID:
- ivo://CDS.VizieR/J/MNRAS/438/426
- Title:
- Spitzer interstellar bubbles
- Short Name:
- J/MNRAS/438/426
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The expansion of interstellar bubbles is suggested to be an important mechanism of triggering material accumulation and star formation. In this work, we investigate the gaseous environment of a large sample of interstellar bubbles identified by the Spitzer space telescope, aiming to explore the possible evidence of triggered gas accumulation and star formation in a statistical sense. By cross-matching 6124 Spitzer interstellar bubbles from the Milky Way Project (MWP) and more than 2500 Galactic HII regions collected by us, we obtain the velocity information for 818 MWP bubbles. To study the gaseous environment of the interstellar bubbles and get rid of the projection effect as much as possible, we constrain the velocity difference between the bubbles and the ^13^CO(1-0) emission extracted from the Galactic Ring Survey (GRS). Three methods: the mean azimuthally averaged radial profile of ^13^CO emission, the surface number density of molecular clumps and the angular cross-correlation function of MWP bubbles and the GRS molecular clumps are adopted. Significant over density of molecular gas is found to be close to the bubble rims. 60 percent of the studied bubbles were found to have associated molecular clumps. By comparing the clump-associated and the clump-unassociated MWP interstellar bubbles, we reveal that the bubbles in associations tend to be larger and thicker in physical sizes. From the different properties shown by the bubble-associated and bubble-unassociated clumps, we speculate that some of the bubble-associated clumps result from the expansion of bubbles. The fraction of the molecular clumps associated with the MWP bubbles is estimated to be about 20 percent after considering the projection effect. For the bubble-clump complexes, we found that the bubbles in the complexes with associated massive young stellar object(s) (MYSO(s)) have larger physical sizes, hence the complexes tend to be older. We propose that an evolutionary sequence might exist between the relatively younger MYSO-unassociated bubble-clump complexes and the MYSO-associated complexes.
- ID:
- ivo://CDS.VizieR/J/ApJ/759/146
- Title:
- Spitzer/IRAC photometry for 37 Galactic Cepheids
- Short Name:
- J/ApJ/759/146
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Carnegie Hubble Program (CHP) is designed to calibrate the extragalactic distance scale using data from the post-cryogenic era of the Spitzer Space Telescope. The ultimate goal of the CHP is a systematic improvement in the distance scale leading to a determination of the Hubble constant to within an accuracy of 2%. This paper focuses on the measurement and calibration of the Galactic Cepheid period-luminosity (PL, Leavitt) relation using the warm Spitzer/IRAC 1 and 2 bands at 3.6 and 4.5{mu}m. We present photometric measurements covering the period range 4-70 days for 37 Galactic Cepheids. Data at 24 phase points were collected for each star. Three PL relations of the form M=a(log(P)-1)+b are derived. The method adopted here takes the slope a to be -3.31, as determined from the Spitzer Large Magellanic Cloud (LMC) data of Scowcroft et al. (Cat. J/ApJ/743/76). Using the geometric Hubble Space Telescope guide-star distances to 10 Galactic Cepheids, we find a calibrated 3.6{mu}m PL zero point of -5.80+/-0.03. Together with our value for the LMC zero point, we determine a reddening-corrected distance modulus of 18.48+/-0.04mag to the LMC. The mid-IR period-color diagram and the [3.6]-[4.5] color variation with phase are interpreted in terms of CO absorption at 4.5{mu}m. This situation compromises the use of the 4.5{mu}m data for distance determinations.
- ID:
- ivo://CDS.VizieR/J/ApJ/798/87
- Title:
- Spitzer/IRS debris disk catalog. II.
- Short Name:
- J/ApJ/798/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog (Chen et al. 2014, J/ApJS/211/25). We have discovered 10 and/or 20 {mu}m silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 {mu}m observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q=3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a_min_, increases with stellar luminosity, L_*_, but the dependence of a_min_ on L_*_ is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.
- ID:
- ivo://CDS.VizieR/J/ApJS/226/8
- Title:
- Spitzer/IRS survey of Class II objects in Orion A. I.
- Short Name:
- J/ApJS/226/8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present our investigation of 319 Class II objects in Orion A observed by Spitzer/IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with those of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10{mu}m silicate feature (F_11.3_/F_9.8_). (4) The 20-31{mu}m continuum spectral index tracks the projected distance from the most luminous Trapezium star, {theta}^1^ Ori C. A possible explanation is UV ablation of the outer parts of disks.
- ID:
- ivo://CDS.VizieR/J/MNRAS/436/1465
- Title:
- Star clusters distances and extinctions
- Short Name:
- J/MNRAS/436/1465
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Determining star cluster distances is essential to analyse their properties and distribution in the Galaxy. In particular, it is desirable to have a reliable, purely photometric distance estimation method for large samples of newly discovered cluster candidates e.g. from the Two Micron All Sky Survey, the UK Infrared Deep Sky Survey Galactic Plane Survey and VVV. Here, we establish an automatic method to estimate distances and reddening from near-infrared photometry alone, without the use of isochrone fitting. We employ a decontamination procedure of JHK photometry to determine the density of stars foreground to clusters and a galactic model to estimate distances. We then calibrate the method using clusters with known properties. This allows us to establish distance estimates with better than 40 percent accuracy. We apply our method to determine the extinction and distance values to 378 known open clusters and 397 cluster candidates from the list of Froebrich, Scholz & Raftery (2007MNRAS.374..399F, Cat. J/MNRAS/374/399). We find that the sample is biased towards clusters of a distance of approximately 3kpc, with typical distances between 2 and 6kpc. Using the cluster distances and extinction values, we investigate how the average extinction per kiloparsec distance changes as a function of the Galactic longitude. We find a systematic dependence that can be approximated by A_H_(l)[mag/kpc]=0.10+0.001x|l-180{deg}|/{deg} for regions more than 60{deg} from the Galactic Centre.
- ID:
- ivo://CDS.VizieR/J/MNRAS/444/290
- Title:
- Star clusters distances and extinctions. II.
- Short Name:
- J/MNRAS/444/290
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Until now, it has been impossible to observationally measure how star cluster scaleheight evolves beyond 1Gyr as only small samples have been available. Here, we establish a novel method to determine the scaleheight of a cluster sample using modelled distributions and Kolmogorov-Smirnov tests. This allows us to determine the scaleheight with a 25% accuracy for samples of 38 clusters or more. We apply our method to investigate the temporal evolution of cluster scaleheight, using homogeneously selected sub-samples of Kharchenko et al. (MWSC, 2012, Cat. J/A+A/543/A156, 2013, J/A+A/558/A53 ), Dias et al. (DAML02, 2002A&A...389..871D, Cat. B/ocl), WEBDA, and Froebrich et al. (FSR, 2007MNRAS.374..399F, Cat. J/MNRAS/374/399). We identify a linear relationship between scaleheight and log(age/yr) of clusters, considerably different from field stars. The scaleheight increases from about 40pc at 1Myr to 75pc at 1Gyr, most likely due to internal evolution and external scattering events. After 1Gyr, there is a marked change of the behaviour, with the scaleheight linearly increasing with log(age/yr) to about 550pc at 3.5Gyr. The most likely interpretation is that the surviving clusters are only observable because they have been scattered away from the mid-plane in their past. A detailed understanding of this observational evidence can only be achieved with numerical simulations of the evolution of cluster samples in the Galactic disc. Furthermore, we find a weak trend of an age-independent increase in scaleheight with Galactocentric distance. There are no significant temporal or spatial variations of the cluster distribution zero-point. We determine the Sun's vertical displacement from the Galactic plane as Z_{sun}_=18.5+/-1.2pc.
- ID:
- ivo://CDS.VizieR/J/A+A/397/133
- Title:
- Star-forming complexes in the Galaxy
- Short Name:
- J/A+A/397/133
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out a multiwavelength study of the plane of our Galaxy in order to establish a star-forming-complex catalogue which is as complete as possible. Features observed include H{alpha}, H109{alpha}, CO, the radio continuum and absorption lines. For each complex we have determined the position, the systemic velocity, the kinematic distance and, when possible, the stellar distance and the corresponding uncertainties. All of these parameters were determined as homogeneously as possible, in particular all the stellar distances have been (re)calculated with the same calibration and the kinematic distances with the same mean Galactic rotation curve. Through the complexes with stellar distance determination, a rotation curve has been fitted. It is in good agreement with the one of Brand & Blitz (1993, Cat. <J/A+A/275/67>).
- ID:
- ivo://CDS.VizieR/J/A+A/638/A76
- Title:
- StarHorse data for 5 surveys
- Short Name:
- J/A+A/638/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We combine high-resolution spectroscopic data from APOGEE-2 survey Data Release 16 (DR16) with broad-band photometric data from several sources, as well as parallaxes from Gaia Data Release 2 (DR2). Using the Bayesian isochrone-fitting code StarHorse, we derive distances, extinctions and astrophysical parameters for around 388,815 APOGEE stars, achieving typical distance uncertainties of 6% for APOGEE giants, 2% for APOGEE dwarfs, as well as extinction uncertainties of 0.07mag when all photometric information is available, and 0.17mag if optical photometry is missing. StarHorse uncertainties vary with the input spectroscopic catalogue, with the available photometry, and with the parallax uncertainties. To illustrate the impact of our results, we show that, thanks to Gaia DR2 and the now larger sky coverage of APOGEE-2 (including APOGEE-South), we obtain an extended map of the Galactic plane, providing an unprecedented coverage of the disk close to the Galactic mid-plane (|ZGal|<1kpc) from the Galactic Centre out to RGal 20 kpc. The improvements in statistics as well as distance and extinction uncertainties unveil the presence of the bar in stellar density, as well as the striking chemical duality in the innermost regions of the disk, now clearly extending to the inner bulge. We complement this paper with distances and extinctions for stars in other public released spectroscopic surveys: 324,999 in GALAH DR2, 4,928,715 in LAMOST DR5, 408,894 in RAVE DR6, and 6,095 in GES DR3.