- ID:
- ivo://CDS.VizieR/J/MNRAS/481/3244
- Title:
- Chemo-kinematics from MARVELS
- Short Name:
- J/MNRAS/481/3244
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Combining stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity, with barycentric radial velocity data provides insight into the chemo-dynamics of the Milky Way and our local Galactic environment. We analyse 3075 stars with spectroscopic data from the Sloan Digital Sky Survey III MARVELS radial velocity survey and present atmospheric parameters for 2343 dwarf stars using the spectral indices method, a modified version of the equivalent width method. We present barycentric radial velocities for a sample of 2610 stars with a median uncertainty of 0.3km/s. We determine stellar ages using two independent methods and calculate ages for 2335 stars with a maximum-likelihood isochronal age-dating method and for 2194 stars with a Bayesian age-dating method. Using previously published parallax data, we compute Galactic orbits and space velocities for 2504 stars to explore stellar populations based on kinematic and age parameters. This study combines good ages and exquisite velocities to explore local chemo-kinematics of the Milky Way, which complements many of the recent studies of giant stars with the APOGEE survey, and we find our results to be in agreement with current chemo-dynamical models of the Milky Way. Particularly, we find from our metallicity distributions and velocity-age relations of a kinematically defined thin disc that the metal-rich end has stars of all ages, even after we clean the sample of highly eccentric stars, suggesting that radial migration plays a key role in the metallicity scatter of the thin disc. All stellar parameters and kinematic data derived in this work are catalogued and published online in machine-readable form.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/441/195
- Title:
- Circumstellar disks in Trapezium cluster
- Short Name:
- J/A+A/441/195
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this paper we present results on the size distribution of circumstellar disks in the Trapezium cluster as measured from HST/WFPC2 data. Direct diameter measurements of a sample of 135 bright proplyds and 14 silhouettes disks suggest that there is a single population of disks well characterized by a power-law distribution with an exponent of -1.9+/-0.3 between disk diameters 100-400AU. For the stellar mass sampled (from late G to late M stars) we find no obvious correlation between disk diameter and stellar mass. We also find that there is no obvious correlation between disk diameter and the projected distance to the ionizing Trapezium OB stars. We estimate that about 40% of the disks in the Trapezium have radius larger than 50AU. We suggest that the origin of the Solar system's (Kuiper belt) outer edge is likely to be due to the star formation environment and disk destruction processes (photo-evaporation, collisions) present in the stellar cluster on which the Sun was probably formed. Finally, we identified a previously unknown proplyd and named it 266-557, following convention.
- ID:
- ivo://CDS.VizieR/J/ApJ/832/176
- Title:
- Classical Cepheids in MCs. I. LMC disk
- Short Name:
- J/ApJ/832/176
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed investigation of the Large Magellanic Cloud (LMC) disk using classical Cepheids. Our analysis is based on optical (I, V; OGLE-IV), near-infrared (NIR: J, H, K_S_) and mid-infrared (MIR: w1; WISE) mean magnitudes. By adopting new templates to estimate the NIR mean magnitudes from single-epoch measurements, we build the currently most accurate, largest, and homogeneous multi-band data set of LMC Cepheids. We determine Cepheid individual distances using optical and NIR Period-Wesenheit relations (PWRs), to measure the geometry of the LMC disk and its viewing angles. Cepheid distances based on optical PWRs are precise at 3%, but accurate to 7%, while the ones based on NIR PWRs are more accurate (to 3%), but less precise (2%-15%), given the higher photometric error on the observed magnitudes. We found an inclination of i=25.05+/-0.02(stat.)+/-0.55(syst.){deg}, and a position angle of the lines of nodes P.A.=150.76+/-0.02(stat.)+/-0.07(syst.){deg}. These values agree well with estimates based either on young (Red Supergiants) or on intermediate-age (Asymptotic Giant Branch, Red Clump) stellar tracers, but they significantly differ from evaluations based on old (RR Lyrae) stellar tracers. This indicates that young/intermediate and old stellar populations have different spatial distributions. Finally, by using the reddening-law fitting approach, we provide a reddening map of the LMC disk, which is 10 times more accurate and 2 times larger than similar maps in the literature. We also found an LMC true distance modulus of {mu}_0,LMC_=18.48+/-0.10(stat. and syst.)mag, in excellent agreement with the currently most accurate measurement.
- ID:
- ivo://CDS.VizieR/J/A+A/629/A139
- Title:
- Closest stars to the Sun within 50pc catalog
- Short Name:
- J/A+A/629/A139
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Comets in the Oort cloud evolve under the influence of internal and external perturbations, such as giant planets, stellar passages, and the Galactic gravitational tidal field. We aim to study the dynamical evolution of the comets in the Oort cloud, accounting for the perturbation of the Galactic tidal field and passing stars. We base our study on three main approaches; analytic, observational, and numerical. We first construct an analytical model of stellar encounters. We find that individual perturbations do not modify the dynamics of the comets in the cloud unless very close (<0.5pc) encounters occur. Using proper motions, parallaxes, and radial velocities from Gaia DR2 and combining them with the radial velocities from other surveys, we then construct an astrometric catalogue of the 14659 stars that are within 50pc of the Sun. For all these stars we calculate the time and distance of closest approach to the Sun. We find that the cumulative effect of relatively distant (<=1pc) passing stars can perturb the comets in the Oort cloud. Finally, we study the dynamical evolution of the comets in the Oort cloud under the influence of multiple stellar encounters from stars that pass within 2.5 pc of the Sun and the Galactic tidal field over +/-10Myr. We use the Astrophysical Multipurpose Software Environment (AMUSE), and the GPU-accelerated direct N-body code ABIE. We considered two models for the Oort cloud, compact (a<=0.25pc) and extended (a<=0.5pc). We find that the cumulative effect of stellar encounters is the major perturber of the Oort cloud for a compact configuration while for the extended configuration the Galactic tidal field is the major perturber. In both cases the cumulative effect of distant stellar encounters together with the Galactic tidal field raises the semi-major axis of ~1.1% of the comets at the edge of the Oort cloud up to interstellar regions (a>0.5pc) over the 20Myr period considered. This leads to the creation of transitional interstellar comets (TICs), which might become interstellar objects due to external perturbations. This raises the question of the formation, evolution, and current status of the Oort cloud as well as the existence of a "cloud" of objects in the interstellar space that might overlap with our Oort cloud, when considering that other planetary systems should undergo similar processes leading to the ejection of comets.
- ID:
- ivo://CDS.VizieR/J/A+A/650/A156
- Title:
- Cluster formation toward Be87/ON2. I.
- Short Name:
- J/A+A/650/A156
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Disentangling line-of-sight alignments of young stellar populations is crucial for observational studies of star-forming complexes. This task is particularly problematic in a Cygnus-X subregion where several components, located at different distances, overlap: the Berkeley 87 young massive cluster, the poorly known [DB2001] Cl05 embedded cluster, and the ON2 star-forming complex, which in turn is composed of several HII regions. We provide a methodology for building an exhaustive census of young objects that can consistently treat large differences in extinction and distance. OMEGA2000 near-infrared observations of the Berkeley 87 / ON2 field were merged with archival data from Gaia, Chandra, Spitzer, and Herschel, and with cross-identifications from the literature. To address the incompleteness effects and selection biases that arise from the line-of-sight overlap, we adapted existing methods for extinction estimation and young object classification. We also defined the intrinsic reddening index, R_int_, a new tool for separating intrinsically red sources from those whose infrared color excess is caused by extinction. Finally, we introduce a new method for finding young stellar objects based on R_int_. We find 571 objects whose classification is related to recent or ongoing star formation. Together with other point sources with individual estimates of distance or extinction, we compile a catalog of 3005 objects to be used for further membership work. A new distance for Berkeley 87, (1673+/-17)pc, is estimated as a median of 13 spectroscopic members with accurate Gaia EDR3 parallaxes. The flexibility of our approach, especially regarding the R_int_ definition, allows overcoming photometric biases caused by large variations in extinction and distance, in order to obtain homogeneous catalogs of young sources. The multiwavelength census that results from applying our methods to the Berkeley 87 / ON2 field will serve as a basis for disentangling the overlapped populations.
- ID:
- ivo://CDS.VizieR/J/AJ/139/1808
- Title:
- Colors and kinematics of SDSS L dwarfs
- Short Name:
- J/AJ/139/1808
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a sample of 484 L dwarfs, 210 of which are newly discovered from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic database. We combine this sample with known L dwarfs to investigate their izJHKS colors. We present photometric distance relations based on i-z and i-J colors and derive distances to our L dwarf sample. We combine the distances with SDSS/2MASS proper motions in order to examine the tangential velocities.
- ID:
- ivo://CDS.VizieR/J/AJ/151/85
- Title:
- Companions to APOGEE stars. I.
- Short Name:
- J/AJ/151/85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In its three years of operation, the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed >14000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical radial velocity precision of ~100-200 m/s, APOGEE can probe systems with small separation companions down to a few Jupiter masses. Here we present initial results from a catalog of 382 of the most compelling stellar and substellar companion candidates detected by APOGEE, which orbit a variety of host stars in diverse Galactic environments. Of these, 376 have no previously known small separation companion. The distribution of companion candidates in this catalog shows evidence for an extremely truncated brown dwarf (BD) desert with a paucity of BD companions only for systems with a<0.1-0.2 AU, with no indication of a desert at larger orbital separation. We propose a few potential explanations of this result, some which invoke this catalog's many small separation companion candidates found orbiting evolved stars. Furthermore, 16 BD and planet candidates have been identified around metal-poor ([Fe/H]<-0.5) stars in this catalog, which may challenge the core accretion model for companions >10 M_Jup_. Finally, we find all types of companions are ubiquitous throughout the Galactic disk with candidate planetary-mass and BD companions to distances of ~6 and ~16 kpc, respectively.
- ID:
- ivo://CDS.VizieR/J/ApJ/792/119
- Title:
- Companions to nearby stars from Pan-STARRS 1
- Short Name:
- J/ApJ/792/119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of 57 wide (>5'') separation, low-mass (stellar and substellar) companions to stars in the solar neighborhood identified from Pan-STARRS 1 (PS1) data and the spectral classification of 31 previously known companions. Our companions represent a selective subsample of promising candidates and span a range in spectral type of K7-L9 with the addition of one DA white dwarf. These were identified primarily from a dedicated common proper motion search around nearby stars, along with a few as serendipitous discoveries from our Pan-STARRS 1 brown dwarf search. Our discoveries include 23 new L dwarf companions and one known L dwarf not previously identified as a companion. The primary stars around which we searched for companions come from a list of bright stars with well-measured parallaxes and large proper motions from the Hipparcos catalog (8583 stars, mostly A-K dwarfs) and fainter stars from other proper motion catalogs (79170 stars, mostly M dwarfs). We examine the likelihood that our companions are chance alignments between unrelated stars and conclude that this is unlikely for the majority of the objects that we have followed-up spectroscopically. We also examine the entire population of ultracool (>M7) dwarf companions and conclude that while some are loosely bound, most are unlikely to be disrupted over the course of ~10 Gyr. Our search increases the number of ultracool M dwarf companions wider than 300 AU by 88% and increases the number of L dwarf companions in the same separation range by 82%. Finally, we resolve our new L dwarf companion to HIP 6407 into a tight (0.13'', 7.4 AU) L1+T3 binary, making the system a hierarchical triple. Our search for these key benchmarks against which brown dwarf and exoplanet atmosphere models are tested has yielded the largest number of discoveries to date.
- ID:
- ivo://CDS.VizieR/J/ApJ/887/261
- Title:
- Compilation of planets around M dwarfs
- Short Name:
- J/ApJ/887/261
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- M dwarfs host most of the exoplanets in the local Milky Way. Some of these planets, ranging from sub-Earths to super-Jupiters, orbit in their stars' habitable zones (HZs), although many likely possess surface environments that preclude habitability. Moreover, exomoons around these planets could harbor life for long timescales and thus may also be targets for biosignature surveys. Here we investigate the potential habitability, stability, and detectability of exomoons around exoplanets orbiting M dwarfs. We first compile an updated list of known M-dwarf exoplanet hosts, comprising 109 stars and 205 planets. For each M dwarf, we compute and update precise luminosities with the Virtual Observatory spectral energy distribution Analyzer and Gaia DR2 parallaxes to determine inner and outer boundaries of their HZs. For each planet, we retrieve (or, when necessary, homogeneously estimate) their masses and radii, calculate the long-term dynamical stability of hypothetical moons, and identify those planets that can support habitable moons. We find that 33 exoplanet candidates are located in the HZs of their host stars and that four of them could host Moon- to Titan-mass exomoons for timescales longer than the Hubble time.
- ID:
- ivo://CDS.VizieR/J/ApJS/254/10
- Title:
- Compilation of W UMa stars
- Short Name:
- J/ApJS/254/10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a statistical study of the largest bibliographic compilation of stellar and orbital parameters of W UMa stars derived by light-curve synthesis with Roche models. The compilation includes nearly 700 individually investigated objects from over 450 distinct publications. Almost 70% of this sample is comprised of stars observed in the past decade that have not been considered in previous statistical studies. We estimate the ages of the cataloged stars, model the distributions of their periods, mass ratios, temperatures, and other quantities, and compare them with the data from the Catalina Real-Time Transient Survey, LAMOST, and Gaia archives. As only a small fraction of the sample has radial-velocity curves, we examine the reliability of the photometric mass ratios in totally and partially eclipsing systems and find that totally eclipsing W UMa stars with photometric mass ratios have the same parameter distributions as those with spectroscopic mass ratios. Most of the stars with reliable parameters have mass ratios below 0.5 and orbital periods shorter than 0.5 days. Stars with longer periods and temperatures above 7000K stand out as outliers and should not be labeled W UMa binaries.