- ID:
- ivo://CDS.VizieR/J/A+A/536/A43
- Title:
- SDSS WD main-sequence binaries. XII.
- Short Name:
- J/A+A/536/A43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The complexity of the common-envelope phase and of magnetic stellar wind braking currently limits our understanding of close binary evolution. Because of their intrinsically simple structure, observational population studies of white dwarf plus main sequence (WDMS) binaries can potentially test theoretical models and constrain their parameters. The Sloan Digital Sky Survey (SDSS) has provided a large and homogeneously selected sample of WDMS binaries, which we characterise in terms of orbital and stellar parameters. We have obtained radial velocity information for 385 WDMS binaries from follow-up spectroscopy and for an additional 861 systems from the SDSS subspectra. Radial velocity variations identify 191 of these WDMS binaries as post common-envelope binaries (PCEBs). Orbital periods of 58 PCEBs were subsequently measured, predominantly from time-resolved spectroscopy, bringing the total number of SDSS PCEBs with orbital parameters to 79. Observational biases inherent to this PCEB sample were evaluated through extensive Monte Carlo simulations. We find that 21-24% of all SDSS WDMS binaries have undergone common-envelope evolution, which is in good agreement with published binary population models and high-resolution HST imaging of WDMS binaries unresolved from the ground. The bias-corrected orbital period distribution of PCEBs ranges from 1.9h to 4.3d and approximately follows a normal distribution in log(Porb), peaking at ~10.3h. There is no observational evidence for a significant population of PCEBs with periods in the range of days to weeks. The large and homogeneous sample of SDSS WDMS binaries provides the means to test fundamental predictions of binary population models, hence to observationally constrain the evolution of all close compact binaries.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/815/63
- Title:
- SDSS wide double white dwarfs spectroscopy
- Short Name:
- J/ApJ/815/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present observational constraints on the initial-final mass relation (IFMR) using wide double white dwarfs (DWDs). We identify 65 new candidate wide DWDs within the Sloan Digital Sky Survey, bringing the number of candidate wide DWDs to 142. We then engage in a spectroscopic follow-up campaign and collect existing spectra for these objects; using these spectra, we derive masses and cooling ages for 54 hydrogen (DA) WDs in DWDs. We also identify one new DA/DB pair, four candidate DA/DC pairs, four candidate DA/DAH pairs, and one new candidate triple degenerate system. Because wide DWDs are co-eval and evolve independently, the difference in the pre-WD lifetimes should equal the difference in the WD cooling ages. We use this to develop a Bayesian hierarchical framework and construct a likelihood function to determine the probability that any particular IFMR fits a sample of wide DWDs. We then define a parametric model for the IFMR and find the best parameters indicated by our sample of DWDs. We place robust constraints on the IFMR for initial masses of 2-4M_{sun}_. The WD masses produced by our model for stars within this mass range differ from those predicted by semi-empirical fits to open cluster WDs. Within this mass range, where there are few constraining open cluster WDs and disagreements in the cluster ages, wide DWDs may provide more reliable constraints on the IFMR. Expanding this method to the many wide DWDs expected to be discovered by Gaia may transform our understanding of the IFMR.
- ID:
- ivo://CDS.VizieR/J/AJ/159/124
- Title:
- Searching Kepler data. I. 17 new planets
- Short Name:
- J/AJ/159/124
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of an independent search of all ~200000 stars observed over the four year Kepler mission (Q1-Q17) for multiplanet systems, using a three-transit minimum detection criterion to search orbital periods up to hundreds of days. We incorporate both automated and manual triage, and provide estimates of the completeness and reliability of our vetting pipeline. Our search returned 17 planet candidates (PCs) in addition to thousands of known Kepler Objects of Interest (KOIs), with a 98.8% recovery rate of already confirmed planets. We highlight the discovery of one candidate, KIC-7340288b, that is both rocky (radius=<1.6R_{Earth}_) and in the Habitable Zone (insolation between 0.25 and 2.2 times the Earth's insolation). Another candidate is an addition to the already known KOI-4509 system. We also present adaptive optics imaging follow-up for six of our new PCs, two of which reveal a line-of-sight stellar companion within 4".
- ID:
- ivo://CDS.VizieR/J/A+A/597/A30
- Title:
- Seismology and spectroscopy of CoRoGEE red giants
- Short Name:
- J/A+A/597/A30
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the CoRoGEE dataset -- obtained from CoRoT lightcurves for 606 red giant stars in two fields of the Galactic disc which have been co-observed for an ancillary project of the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The CoRoGEE stars cover a large radial range of the Milky Way's disc (5kpc<RGal<14kpc) and thus provide a valuable dataset for Galactic Archaeology studies. We have used the Bayesian parameter estimation code PARAM to calculate distances, extinctions, masses, and ages for these stars in a homogeneous analysis, resulting in relative statistical uncertainties of 2% in distance, 4% in radius, ~9% in mass and ~25% in age. We also assess systematic age uncertainties due to different input physics and mass loss.
- ID:
- ivo://CDS.VizieR/J/MNRAS/491/5489
- Title:
- Semi-detached double-lined eclipsing binaries
- Short Name:
- J/MNRAS/491/5489
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Semidetached eclipsing systems provide a unique opportunity to derive the basic properties of interacting binaries. The goal of this work is to collect and to make use of data on semidetached systems with available light and radial velocity curve solutions. I have compiled the most comprehensive list to date, of 119 semidetached double-lined eclipsing binaries, containing the orbital parameters and physical parameters of the components. I consider the classification of semidetached binaries and discuss gaps between various classes in the Hertzspung-Russell diagram. I list systems with component parameters that are inverted and briefly discuss their evolutionary state.
- ID:
- ivo://CDS.VizieR/J/A+A/651/A70
- Title:
- SHINE sample definition
- Short Name:
- J/A+A/651/A70
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from 5 to 300au. A careful assessment of the stellar properties is crucial for a proper understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this rst paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the rst phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this rst paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample were revisited, including for instance measurements from the GAIA Data Release 2. Rotation periods were derived for the vast majority of the late-type objects exploiting TESS light curves and dedicated photometric observations. The properties of individual targets and of the sample as a whole are presented.
- ID:
- ivo://CDS.VizieR/J/AJ/158/68
- Title:
- Short-period variables in young open cluster Stock 8
- Short Name:
- J/AJ/158/68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present time-series photometry in the field of Stock 8 and identified 130 short-period variable stars. Twenty-eight main-sequence and 23 pre-main-sequence variables are found to be part of cluster Stock 8. The main-sequence variables are classified as slow pulsators of the B-type, {beta} Cep, and {delta} Scuti stars. Fourteen main-sequence stars could be new class variables as discussed by Mowlavi et al. (2013, J/A+A/554/A108) and Lata et al. (2011MNRAS.418.1346L; 2012MNRAS.427.1449L; 2014, J/MNRAS/442/273; 2016MNRAS.456.2505L). The age and mass of pre-main-sequence variables are found to be ~<5 Myr and in the mass range of 0.5-2.8 M_{sun}_, respectively. These pre-main-sequence stars could be T-Tauri variables. We have found 5 and 2 of 23 pre-main-sequence variables as classical T-Tauri stars and Herbig Ae/Be stars, respectively, whereas 16 pre-main-sequence stars are classified as weak-line T-Tauri stars.
- ID:
- ivo://CDS.VizieR/J/ApJS/239/2
- Title:
- Simulated exoplanets from TESS list of targets
- Short Name:
- J/ApJS/239/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) has a goal of detecting small planets orbiting stars bright enough for mass determination via ground-based radial velocity observations. Here, we present estimates of how many exoplanets the TESS mission will detect, the physical properties of the detected planets, and the properties of the stars that those planets orbit. This work uses stars drawn from the TESS Input Catalog (TIC) Candidate Target List and revises yields from prior studies that were based on Galactic models. We modeled the TESS observing strategy to select approximately 200000 stars at 2-minute cadence, while the remaining stars are observed at 30-minute cadence in full-frame image data. We placed zero or more planets in orbit around each star, with physical properties following measured exoplanet occurrence rates, and used the TESS noise model to predict the derived properties of the detected exoplanets. In the TESS 2-minute cadence mode we estimate that TESS will find 1250+/-70 exoplanets (90% confidence), including 250 smaller than 2R_{Earth}_. Furthermore, we predict that an additional 3100 planets will be found in full-frame image data orbiting bright dwarf stars and more than 10000 around fainter stars. We predict that TESS will find 500 planets orbiting M dwarfs, but the majority of planets will orbit stars larger than the Sun. Our simulated sample of planets contains hundreds of small planets amenable to radial velocity follow-up, potentially more than tripling the number of planets smaller than 4R_{Earth}_ with mass measurements. This sample of simulated planets is available for use in planning follow-up observations and analyses.
- ID:
- ivo://CDS.VizieR/J/AJ/156/277
- Title:
- Sixty validated planets from K2 campaigns 5-8
- Short Name:
- J/AJ/156/277
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a uniform analysis of 155 candidates from the second year of NASA's K2 mission (Campaigns 5-8), yielding 60 statistically validated planets spanning a range of properties with median values of R_p_=2.5 R_{Earth}_, P=7.1 days, T_eq_=811 K, and J=11.3 mag. The sample includes 24 planets in 11 multiplanetary systems, as well as 18 false positives and 77 remaining planet candidates. Of particular interest are 18 planets smaller than 2 R_{Earth}_, five orbiting stars brighter than J=10 mag, and a system of four small planets orbiting the solar-type star EPIC 212157262. We compute planetary transit parameters and false-positive probabilities using a robust statistical framework and present a complete analysis incorporating the results of an intensive campaign of high-resolution imaging and spectroscopic observations. This work brings the K2 yield to over 360 planets, and by extrapolation, we expect that K2 will have discovered ~600 planets before the expected depletion of its onboard fuel in late 2018.
- ID:
- ivo://CDS.VizieR/J/ApJ/851/48
- Title:
- SLACS. XIII. Galaxy-scale strong lens candidates
- Short Name:
- J/ApJ/851/48
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the full sample of 118 galaxy-scale strong-lens candidates in the Sloan Lens ACS (SLACS) Survey for the Masses (S4TM) Survey, which are spectroscopically selected from the final data release of the Sloan Digital Sky Survey. Follow-up Hubble Space Telescope (HST) imaging observations confirm that 40 candidates are definite strong lenses with multiple lensed images. The foreground-lens galaxies are found to be early-type galaxies (ETGs) at redshifts 0.06-0.44, and background sources are emission-line galaxies at redshifts 0.22-1.29. As an extension of the SLACS Survey, the S4TM Survey is the first attempt to preferentially search for strong-lens systems with relatively lower lens masses than those in the pre-existing strong-lens samples. By fitting HST data with a singular isothermal ellipsoid model, we find that the total projected mass within the Einstein radius of the S4TM strong-lens sample ranges from 3x10^10^M_{sun}_ to 2x10^11^M_{sun}_. In Shu+ (2015ApJ...803...71S), we have derived the total stellar mass of the S4TM lenses to be 5x10^10^M_{sun}_ to 1x10^12^M_{sun}_. Both the total enclosed mass and stellar mass of the S4TM lenses are on average almost a factor of 2 smaller than those of the SLACS lenses, which also represent the typical mass scales of the current strong-lens samples. The extended mass coverage provided by the S4TM sample can enable a direct test, with the aid of strong lensing, for transitions in scaling relations, kinematic properties, mass structure, and dark-matter content trends of ETGs at intermediate-mass scales as noted in previous studies.