- ID:
- ivo://CDS.VizieR/J/ApJ/848/87
- Title:
- CALIFA SFRs. II. Bulges, bars & disks
- Short Name:
- J/ApJ/848/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We estimate the current extinction-corrected H{alpha} star formation rate (SFR) of the different morphological components that shape galaxies (bulges, bars, and disks). We use a multicomponent photometric decomposition based on Sloan Digital Sky Survey imaging to Calar Alto Legacy Integral Field Area Integral Field Spectroscopy (IFS) datacubes for a sample of 219 galaxies. This analysis reveals an enhancement of the central SFR and specific SFR (sSFR = SFR/M*) in barred galaxies. Along the main sequence, we find that more massive galaxies in total have undergone efficient suppression (quenching) of their star formation, in agreement with many studies. We discover that more massive disks have had their star formation quenched as well. We evaluate which mechanisms might be responsible for this quenching process. The presence of type 2 AGNs plays a role at damping the sSFR in bulges and less efficiently in disks. Also, the decrease in the sSFR of the disk component becomes more noticeable for stellar masses around 10^10.5^M_{sun}_; for bulges, it is already present at ~10^9.5^M_{sun}_. The analysis of the line- of-sight stellar velocity dispersions ({sigma}) for the bulge component and of the corresponding Faber-Jackson relation shows that AGNs tend to have slightly higher {sigma} values than star-forming galaxies for the same mass. Finally, the impact of environment is evaluated by means of the projected galaxy density, {Sigma}5. We find that the SFR of both bulges and disks decreases in intermediate- to high-density environments. This work reflects the potential of combining IFS data with 2D multicomponent decompositions to shed light on the processes that regulate the SFR.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/154/108
- Title:
- California-Kepler Survey (CKS). II. Properties
- Short Name:
- J/AJ/154/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California-Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetary radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.
- ID:
- ivo://CDS.VizieR/J/AJ/155/48
- Title:
- California-Kepler Survey (CKS). V. Masses and radii
- Short Name:
- J/AJ/155/48
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have established precise planet radii, semimajor axes, incident stellar fluxes, and stellar masses for 909 planets in 355 multi-planet systems discovered by Kepler. In this sample, we find that planets within a single multi-planet system have correlated sizes: each planet is more likely to be the size of its neighbor than a size drawn at random from the distribution of observed planet sizes. In systems with three or more planets, the planets tend to have a regular spacing: the orbital period ratios of adjacent pairs of planets are correlated. Furthermore, the orbital period ratios are smaller in systems with smaller planets, suggesting that the patterns in planet sizes and spacing are linked through formation and/or subsequent orbital dynamics. Yet, we find that essentially no planets have orbital period ratios smaller than 1.2, regardless of planet size. Using empirical mass-radius relationships, we estimate the mutual Hill separations of planet pairs. We find that 93% of the planet pairs are at least 10 mutual Hill radii apart, and that a spacing of ~20 mutual Hill radii is most common. We also find that when comparing planet sizes, the outer planet is larger in 65%+/-0.4% of cases, and the typical ratio of the outer to inner planet size is positively correlated with the temperature difference between the planets. This could be the result of photo-evaporation.
- ID:
- ivo://CDS.VizieR/J/AJ/156/264
- Title:
- California-Kepler Survey. VII. Planet radius gap
- Short Name:
- J/AJ/156/264
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The distribution of planet sizes encodes details of planet formation and evolution. We present the most precise planet size distribution to date based on Gaia parallaxes, Kepler photometry, and spectroscopic temperatures from the California-Kepler Survey. Previously, we measured stellar radii to 11% precision using high-resolution spectroscopy; by adding Gaia astrometry, the errors are now 3%. Planet radius measurements are, in turn, improved to 5% precision. With a catalog of ~1000 planets with precise properties, we probed in fine detail the gap in the planet size distribution that separates two classes of small planets, rocky super-Earths and gas-dominated sub-Neptunes. Our previous study and others suggested that the gap may be observationally under-resolved and inherently flat-bottomed, with a band of forbidden planet sizes. Analysis based on our new catalog refutes this; the gap is partially filled in. Two other important factors that sculpt the distribution are a planet's orbital distance and its host-star mass, both of which are related to a planet's X-ray/UV irradiation history. For lower-mass stars, the bimodal planet distribution shifts to smaller sizes, consistent with smaller stars producing smaller planet cores. Details of the size distribution including the extent of the "sub-Neptune desert" and the width and slope of the gap support the view that photoevaporation of low-density atmospheres is the dominant evolutionary determinant of the planet size distribution.
- ID:
- ivo://CDS.VizieR/J/AJ/156/254
- Title:
- California-Kepler Survey.VI. Kepler multis & singles
- Short Name:
- J/AJ/156/254
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The California-Kepler Survey (CKS) catalog contains precise stellar and planetary properties for the Kepler planet candidates, including systems with multiple detected transiting planets ("multis") and systems with just one detected transiting planet ("singles", although additional planets could exist). We compared the stellar and planetary properties of the multis and singles in a homogeneous subset of the full CKS-Gaia catalog. We found that sub-Neptune-sized singles and multis do not differ in their stellar properties or planet radii. In particular: (1) The distributions of stellar properties M_*_, [Fe/H], and vsini for the Kepler sub-Neptune-sized singles and multis are statistically indistinguishable. (2) The radius distributions of the sub-Neptune-sized singles and multis with P>3 days are indistinguishable, and both have a valley at ~1.8 R_{Earth}_. However, there are significantly more detected short-period (P<3 days), sub-Neptune-sized singles than multis. The similarity of the host-star properties, planet radii, and radius valley for singles and multis suggests a common origin. The similar radius valley, which is likely sculpted by photo-evaporation from the host star within the first 100 Myr, suggests that planets in both singles and multis spend much of the first 100 Myr near their present, close-in locations. One explanation that is consistent with the similar fundamental properties of singles and multis is that many of the singles are members of multi-planet systems that underwent planet-planet scattering.
- ID:
- ivo://CDS.VizieR/J/ApJ/770/90
- Title:
- Candidate planets in the habitable zones
- Short Name:
- J/ApJ/770/90
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A key goal of the Kepler mission is the discovery of Earth-size transiting planets in "habitable zones" where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p_HZ_ that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass, age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p_HZ_. Sixty-two planets have p_HZ_>0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}_{Earth}_) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/833/281
- Title:
- Candidate rotating M dwarfs from PS1-MDS
- Short Name:
- J/ApJ/833/281
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ~4 million sources in PS1-MDS to a sample of 184148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of <~1-130 days in stars with estimated effective temperatures of ~2700-4000K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler-based searches have not been sensitive to very slowly rotating stars (P_rot_>~70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10-40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.
- ID:
- ivo://CDS.VizieR/J/A+A/621/A112
- Title:
- Carbon and oxygen in 107 dwarf stars
- Short Name:
- J/A+A/621/A112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the results from the determination of stellar masses, carbon and oxygen abundances in the atmospheres of 107 stars from the CHEPS program. Our stars are drawn from a population with a significantly super-solar metallicity. At least 10 of these stars are known to host orbiting planets. In this work, we set out to understand the behavior of carbon and oxygen abundance in stars with different spectral classes, metallicities and Vsini, within the metal-rich stellar population. Masses of these stars were determined using the data from Gaia DR2 release. The oxygen and carbon abundances were determined by fitting the absorption lines. Oxygen abundances were determined by fits to the 6300.304{AA} OI line, and for the determination of the carbon abundances we used 3 lines of the CI atom and 12 lines of C_2_ molecule for the determination of carbon abundances. We determine masses and abundances of 107 CHEPS stars. There is no evidence that the [C/O] ratio depends on V sin i or the mass of the star, within our constrained range of masses, i.e. 0.82<M*/M_{sun}_<1.5 and metallicities -0.27<[Fe/H]<+0.39 and we confirm that metal-rich dwarf stars with planets are more carbon-rich in comparison with non-planet host stars, with a statistical significance of 96%. We find tentative evidence that there is a slight offset to lower abundance and a greater dispersion in oxygen abundances relative to carbon, and interpret this as potentially arising from the production of the oxygen being more effective at more metal-poor epochs. We also find evidence that for lower mass star's the angular momentum loss in star's with planets as measured by Vsini is steeper than star's without planets. In general, we find that the fast rotators (Vsini>5km/s) are massive stars.
- ID:
- ivo://CDS.VizieR/J/A+A/628/A102
- Title:
- Carbon-rich (DQ) white dwarfs in SDSS
- Short Name:
- J/A+A/628/A102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Among the spectroscopically identified white dwarfs, a fraction smaller than 2% have spectra dominated by carbon lines, mainly molecular C_2_, but also in a smaller group by CI and CII lines. These are together called DQ white dwarfs. We derive atmospheric parameters Teff, logg, and carbon abundances for a large sample of these stars and discuss implications for their spectral evolution. Sloan Digital Sky Survey spectra and ugriz photometry were used, together with Gaia Data Release 2 parallaxes and G band photometry. These were fitted to synthetic spectra and theoretical photometry derived from model atmospheres. We found that the DQs hotter than Teff ~10000K have masses ~0.4M_{sun}_ larger than the classical DQ, which have masses typical for the majority of white dwarfs (~0.6M_{sun}_). We found some evidence that the peculiar DQ below 10000K also have significantly larger masses and may thus be the descendants of the hot and warm DQs above 10000K. A significant fraction of the hotter objects with Teff>14500K have atmospheres dominated by carbon.
- ID:
- ivo://CDS.VizieR/J/A+A/657/A87
- Title:
- CASCADES I. Sample definition and first results
- Short Name:
- J/A+A/657/A87
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Following the first discovery of a planet orbiting a giant star in 2002, we started the CORALIE radial-velocity search for companions around evolved stars (CASCADES). We present the observations of three stars conducted at the 1.2m Leonard Euler Swiss telescope at La Silla Observatory, Chile, using the CORALIE spectrograph. We aim to detect planetary companions to intermediate-mass G- and K- type evolved stars and perform a statistical analysis of this population. We searched for new planetary systems around the stars HD22532 (TIC200851704), HD64121 (TIC264770836), and HD69123 (TIC146264536). We have followed a volume-limited sample of 641 red giants since 2006 to obtain high-precision radial-velocity measurements. We used the Data & Analysis Center for Exoplanets (DACE) platform to perform a radial-velocity analysis to search for periodic signals in the line profile and activity indices, to distinguish between planetary-induced radial-velocity variations and stellar photospheric jitter, and to search for significant signals in the radial-velocity time series to fit a corresponding Keplerian model. In this paper, we present the survey in detail, and we report on the discovery of the first three planets of the sample around the giant stars HD22532, HD64121, and HD69123.