- ID:
- ivo://CDS.VizieR/J/A+A/640/A27
- Title:
- Protoplanetary disk masses in NGC 2024
- Short Name:
- J/A+A/640/A27
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Protoplanetary disks in dense, massive star-forming regions (SFRs) are strongly affected by their environment. How this environmental impact changes over time is an important constraint on disk evolution and external photoevaporation models. We characterized the dust emission from 179 disks in the core of the young (0.5Myr) NGC 2024 cluster. By studying how the disk mass varies within the cluster, and comparing these disks to those in other regions, we determined how external photoevaporation influences disk properties over time. Using the Atacama Large Millimeter/submillimeter Array (ALMA), a 2.9'x2.9' mosaic centered on NGC 2024 FIR 3 was observed at 225GHz with a resolution of 0.25'', or ~100AU. It contains 179 disks identified at IR wavelengths, 7 new disk candidates, and several protostars. Of the disks in the sample, 57 are detected. The overall detection rate is 32+/-4%. Few of the disks are resolved, with the exception of a giant (R=300AU) transition disk. Serendipitously, we observe a millimeter flare from an X-ray bright Young Stellar Object (YSO), and resolve continuum emission from a Class 0 YSO in the FIR 3 core. Two distinct disk populations are present: a more massive one in the east, along the dense molecular ridge hosting the FIR 1-5 YSOs, with a detection rate of 45+/-7%. In the western population, towards IRS 1, only 15+/-4% of disks are detected. NGC 2024 hosts two distinct disk populations. Disks along the dense molecular ridge are young (0.2-0.5Myr) and partly shielded from the FUV radiation of IRS 2b; their masses are similar to isolated 1-3Myr old SFRs. The western population is older and at lower extinctions, and may be affected by external photoevaporation from both IRS 1 and IRS 2b. It is, however, possible these disks had lower masses to begin with.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/775/45
- Title:
- PTI carbon star angular size survey
- Short Name:
- J/ApJ/775/45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report new interferometric angular diameter observations of 41 carbon stars observed with the Palomar Testbed Interferometer. Two of these stars are CH carbon stars and represent the first such measurements of this subtype. Of these, 39 have Yamashita spectral classes and are of sufficiently high quality that we can determine the dependence of effective temperature on spectral type. We find that there is a tendency for the effective temperature to increase with increasing temperature index by ~120K per step, starting at T_eff_=~2500K for C3, y, although there is a large amount of scatter in this relationship. Overall, the median effective temperature of the carbon star sample is 2800+/-270 K and the median linear radius is 360+/-100R_{sun}_. We also find agreement, on average within 15K, with the T_eff_ determinations of Bergeat et al. (J/A+A/369/178) and a refinement of the carbon star angular size prediction based on V & K magnitudes is presented that is good to an rms of 12%. A subsample of our stars have sufficient {u, v} coverage to permit non-spherical modeling of their photospheres, and a general tendency for detection of statistically significant departures from sphericity with increasing interferometric signal-to-noise is seen. The implications of most -and potentially all- carbon stars being non-spherical is considered in the context of surface inhomogeneities and a rotation-mass-loss connection.
- ID:
- ivo://CDS.VizieR/J/A+A/625/A68
- Title:
- Radii and masses of the CARMENES targets
- Short Name:
- J/A+A/625/A68
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R>80000) spectroscopic survey has been used to derive these fundamental stellar parameters. We derived the radii using Stefan-Boltzmann's law. We obtained the required effective temperatures Teff from a spectral analysis and we obtained the required luminosities L from integrated broadband photometry together with the Gaia DR2 parallaxes. The mass was then determined using a mass-radius relation that we derived from eclipsing binaries known in the literature. We compared this method with three other methods: (1) We calculated the mass from the radius and the surface gravity logg, which was obtained from the same spectral analysis as Teff. (2) We used a widely used infrared mass-magnitude relation. (3) We used a Bayesian approach to infer stellar parameters from the comparison of the absolute magnitudes and colors of our targets with evolutionary models. Between spectral types M0V and M7V our radii cover the range 0.1R_{sun}_<R<0.6R_{sun}_ with an error of 2-3% and our masses cover 0.09M_{sun}_<M<0.6M_{sun}_ with an error of 3-5%. We find good agreement between the masses determined with these different methods for most of our targets. Only the masses of very young objects show discrepancies. This can be well explained with the assumptions that we used for our methods.
- ID:
- ivo://CDS.VizieR/VI/57
- Title:
- Radii of Be star line emitting regions
- Short Name:
- VI/57
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This bibliographic catalogue lists radii of line emitting regions around more than 100 Be stars determined from high signal to noise registrations of emission line profiles, listed in nine papers.
- ID:
- ivo://CDS.VizieR/J/ApJ/694/1085
- Title:
- Radii of exoplanet host stars
- Short Name:
- J/ApJ/694/1085
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present interferometric angular sizes for 12 stars with known planetary companions, for comparison with 28 additional main-sequence stars not known to host planets. For all objects we estimate bolometric fluxes and reddenings through spectral-energy distribution (SED) fits, and in conjunction with the angular sizes, measurements of effective temperature. The angular sizes of these stars are sufficiently small that the fundamental resolution limits of our primary instrument, the Palomar Testbed Interferometer, are investigated at the sub-milliarcsecond level and empirically established based upon known performance limits. We demonstrate that the effective temperature scale as a function of dereddened (V-K)0 color is statistically identical for stars with and without planets. Additionally, in an Appendix we provide SED fits for the 166 stars with known planets which have sufficient photometry available in the literature for such fits; this derived "XO-Rad" database includes homogeneous estimates of bolometric flux, reddening, and angular size.
- ID:
- ivo://CDS.VizieR/J/ApJ/799/180
- Title:
- Radii of 430 KOI Earth- to Neptune-sized planets
- Short Name:
- J/ApJ/799/180
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the cumulative catalog of planets detected by the NASA Kepler mission, we reconstruct the intrinsic occurrence of Earth- to Neptune-size (1-4R_{Earth}_) planets and their distributions with radius and orbital period. We analyze 76711 solar-type (0.8<R_*_/R_{sun}_<1.2) stars with 430 planets on 20-200 day orbits, excluding close-in planets that may have been affected by the proximity to the host star. Our analysis considers errors in planet radii and includes an "iterative simulation" technique that does not bin the data. We find a radius distribution that peaks at 2-2.8 Earth radii, with lower numbers of smaller and larger planets. These planets are uniformly distributed with logarithmic period, and the mean number of such planets per star is 0.46+/-0.03. The occurrence is ~0.66 if planets interior to 20 days are included. We estimate the occurrence of Earth-size planets in the "habitable zone" (defined as 1-2 R_{Earth}_, 0.99-1.7AU for solar-twin stars) as 6.4_-1.1_^+3.4^%. Our results largely agree with those of Petigura et al. (2013PNAS..11019273P), although we find a higher occurrence of 2.8-4 Earth-radii planets. The reasons for this excess are the inclusion of errors in planet radius, updated Huber et al. (2014, J/ApJS/211/2) stellar parameters, and also the exclusion of planets that may have been affected by proximity to the host star.
- ID:
- ivo://CDS.VizieR/J/A+A/373/1032
- Title:
- Radio emission from planetary nebulae
- Short Name:
- J/A+A/373/1032
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have analysed the radio fluxes for 264 planetary nebulae for which reliable measurements of fluxes at 1.4 and 5 GHz, and of nebular diameters are available. For many of the investigated nebulae, the optical thickness is important, especially at 1.4 GHz. Simple models like the one specified only by a single optical thickness or spherical, constant density shells do not account satisfactorily for the observations. Also an r^-2^ density distribution is ruled out. A reasonable representation of the observations can be obtained by a two-component model having regions of two different values of optical thickness. We show that the nebular diameters smaller than 10" are uncertain, particularly if they come from photographic plates or Gaussian fitting to the radio profile. While determining the interstellar extinction from an optical to radio flux ratio, caution should be paid regarding optical thickness effects in the radio. We have developed a method for estimating the value of self absorption. At 1.4 GHz self absorption of the flux is usually important and can exceed a factor of 10. At 5 GHz self absorption is negligible for most of the objects, although in some cases it can reach a factor of 2. The Galactic bulge planetary nebulae when used to calibrate the Shklovsky method give a mean nebular mass of 0.14M_{sun}_. The statistical uncertainty of the Shklovsky distances is smaller than a factor of 1.5.
- ID:
- ivo://CDS.VizieR/J/ApJ/791/10
- Title:
- Radius distribution of planets around cool stars
- Short Name:
- J/ApJ/791/10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We calculate an empirical, non-parametric estimate of the shape of the period-marginalized radius distribution of planets with periods less than 150 days using the small yet well-characterized sample of cool (T_eff_< 4000 K) dwarf stars in the Kepler catalog. In particular, we present and validate a new procedure, based on weighted kernel density estimation, to reconstruct the shape of the planet radius function down to radii smaller than the completeness limit of the survey at the longest periods. Under the assumption that the period distribution of planets does not change dramatically with planet radius, we show that the occurrence of planets around these stars continues to increase to below 1 R_{sun}_, and that there is no strong evidence for a turnover in the planet radius function. In fact, we demonstrate using many iterations of simulated data that a spurious turnover may be inferred from data even when the true distribution continues to rise toward smaller radii. Finally, the sharp rise in the radius distribution below ~3 R_{sun}_ implies that a large number of planets await discovery around cool dwarfs as the sensitivities of ground-based transit surveys increase.
- ID:
- ivo://CDS.VizieR/J/AJ/157/63
- Title:
- Radius relations for low-metallicity M-dwarf stars
- Short Name:
- J/AJ/157/63
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- M subdwarfs are low-metallicity M dwarfs that typically inhabit the halo population of the Galaxy. Metallicity controls the opacity of stellar atmospheres; in metal-poor stars, hydrostatic equilibrium is reached at a smaller radius, leading to smaller radii for a given effective temperature. We compile a sample of 88 stars that span spectral classes K7 to M6 and include stars with metallicity classes from solar-metallicity dwarf stars to the lowest metallicity ultra subdwarfs to test how metallicity changes the stellar radius. We fit models to Palomar Double Spectrograph (DBSP) optical spectra to derive effective temperatures (T_eff_) and we measure bolometric luminosities (L_bol_) by combining broad wavelength-coverage photometry with Gaia parallaxes. Radii are then computed by combining the T_eff_ and L_bol_ using the Stefan-Boltzman law. We find that for a given temperature, ultra subdwarfs can be as much as five times smaller than their solar-metallicity counterparts. We present color-radius and color-surface brightness relations that extend down to [Fe/H] of -2.0 dex, in order to aid the radius determination of M subdwarfs, which will be especially important for the WFIRST exoplanetary microlensing survey.
- ID:
- ivo://CDS.VizieR/J/ApJ/866/99
- Title:
- Revised radii of KIC stars & planets using Gaia DR2
- Short Name:
- J/ApJ/866/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- One bottleneck for the exploitation of data from the Kepler mission for stellar astrophysics and exoplanet research has been the lack of precise radii and evolutionary states for most of the observed stars. We report revised radii of 177911 Kepler stars derived by combining parallaxes from the Gaia Data Release 2 with the DR25 Kepler Stellar Properties Catalog. The median radius precision is ~8%, a typical improvement by a factor of 4-5 over previous estimates for typical Kepler stars. We find that ~67% (~120000) of all Kepler targets are main-sequence stars, ~21% (~37000) are subgiants, and ~12% (~21000) are red giants, demonstrating that subgiant contamination is less severe than some previous estimates and that Kepler targets are mostly main-sequence stars. Using the revised stellar radii, we recalculate the radii for 2123 confirmed and 1922 candidate exoplanets. We confirm the presence of a gap in the radius distribution of small, close-in planets, but find that the gap is mostly limited to incident fluxes >200F_{Earth}_, and its location may be at a slightly larger radius (closer to ~2R_{Earth}_) when compared to previous results. Furthermore, we find several confirmed exoplanets occupying a previously described "hot super-Earth desert" at high irradiance, show the relation between a gas-giant planet's radius and its incident flux, and establish a bona fide sample of eight confirmed planets and 30 planet candidates with Rp<2R_{Earth}_ in circumstellar "habitable zones" (incident fluxes between 0.25 and 1.50F_{Earth}_). The results presented here demonstrate the potential for transformative characterization of stellar and exoplanet populations using Gaia data.