- ID:
- ivo://CDS.VizieR/J/AJ/156/102
- Title:
- The TESS Input Catalog and Candidate Target List
- Short Name:
- J/AJ/156/102
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) will be conducting a nearly all-sky photometric survey over two years, with a core mission goal to discover small transiting exoplanets orbiting nearby bright stars. It will obtain 30 minute cadence observations of all objects in the TESS fields of view, along with two-minute cadence observations of 200000-400000 selected stars. The choice of which stars to observe at the two-minute cadence is driven by the need to detect small transiting planets, which leads to the selection of primarily bright, cool dwarfs. We describe the catalogs assembled and the algorithms used to populate the TESS Input Catalog (TIC), including plans to update the TIC with the incorporation of the Gaia second data release (Cat. I/345) in the near future. We also describe a ranking system for prioritizing stars according to the smallest transiting planet detectable, and assemble a Candidate Target List (CTL) using that ranking. We discuss additional factors that affect the ability to photometrically detect and dynamically confirm small planets, and we note additional stellar populations of interest that may be added to the final target list. The TIC is available on the STScI MAST server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL http://filtergraph.vanderbilt.edu/tess_ctl.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/891/58
- Title:
- TIC star exposure times for JWST, LUVOIR and OST
- Short Name:
- J/ApJ/891/58
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The search for water-rich Earth-sized exoplanets around low-mass stars is rapidly gaining attention because they represent the best opportunity to characterize habitable planets in the near future. Understanding the atmospheres of these planets and determining the optimal strategy for characterizing them through transmission spectroscopy with our upcoming instrumentation is essential in order to constrain their environments. For this study, we present simulated transmission spectra of tidally locked Earth-sized ocean-covered planets around late-M to mid-K stellar spectral types, utilizing the results of general circulation models previously published by Kopparapu+ (2017ApJ...845....5K) as inputs for our radiative transfer calculations performed using NASA's Planetary Spectrum Generator (psg.gsfc.nasa.gov). We identify trends in the depth of H2O spectral features as a function of planet surface temperature and rotation rate. These trends allow us to calculate the exposure times necessary to detect water vapor in the atmospheres of aquaplanets through transmission spectroscopy with the upcoming James Webb Space Telescope (JWST) as well as several future flagship space telescope concepts under consideration (the Large UV Optical Infrared Surveyor (LUVOIR) and the Origins Space Telescope (OST)) for a target list constructed from the Transiting Exoplanet Survey Satellite (TESS) Input Catalog (TIC). Our calculations reveal that transmission spectra for water-rich Earth-sized planets around low-mass stars will be dominated by clouds, with spectral features <20ppm, and only a small subset of TIC stars would allow for the characterization of an ocean planet in the habitable zone. We thus present a careful prioritization of targets that are most amenable to follow-up characterizations with next-generation instrumentation, in order to assist the community in efficiently utilizing precious telescope time.
- ID:
- ivo://CDS.VizieR/J/AJ/157/87
- Title:
- Times of minima for 21 early-type SMC eccentric EBs
- Short Name:
- J/AJ/157/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the apsidal motion and light-curve analyses of 21 eccentric eclipsing binaries located in the Small Magellanic Cloud. Most of these systems have never been studied before, hence their orbital and physical properties as well as the apsidal motion parameters are given here for the first time. All the systems are of early spectral type, having orbital periods up to 4 days. The apsidal motion periods were derived to be from 7.2 to 200 yr (OGLE-SMC-ECL-2194 having the shortest apsidal period among known main-sequence systems). The orbital eccentricities are usually rather mild (median of about 0.06), the maximum eccentricity being 0.33. For the period analysis using O-C diagrams of eclipse timings, in total 951 minima were derived from survey photometry as well as our new data. Moreover, six systems show some additional variation in their O-C diagrams, which should indicate the presence of hidden additional components in them. According to our analysis these third-body variations have periods from 6.9 to 22 yr.
- ID:
- ivo://CDS.VizieR/J/A+A/650/A194
- Title:
- Titans metal-poor reference stars. I.
- Short Name:
- J/A+A/650/A194
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Several large stellar spectroscopic surveys are producing overwhelming amounts of data that can be used for determining stellar atmospheric parameters and chemical abundances. Nonetheless, the accuracy achieved in the derived astrophysical parameters is still insufficient, mainly because of the paucity of adequate calibrators, particularly in the metal-poor regime ([Fe/H]<=-1.0). Our aim is to increase the number of metal-poor stellar calibrators that have accurate parameters. Here, we introduce the Titans metal-poor reference stars: a sample of 41 dwarf and subgiant stars with accurate, but model-dependent, parameters. Effective temperatures (Teff) were derived by fitting observed H{alpha} profiles with synthetic lines computed using three dimensional (3D) hydrodynamic model atmospheres that take into account departures from the local thermodynamic equilibrium (non-LTE effects). Surface gravities (logg) were computed using evolutionary tracks and parallaxes from Gaia early-data release 3. The same methods recover the Teff values of the Gaia benchmark stars, which are mostly based on interferometric measurements, with a 1{sigma} dispersion of 50K. We assume this to be the accuracy of the H{alpha} profiles computed from 3D non-LTE models for metal-poor dwarfs and subgiants, although this is likely an upper-bound estimate dominated by the uncertainty of the standard Teff values. We achieved an internal precision typically between 30-40K, these errors dominated by instrumental effects. The final total uncertainty for the Teff values of the Titans are thus estimated to be of the order of 1%. The typical error for logg is 0.04dex. In addition, we identified a few members of Gaia-Enceladus, of Sequoia, and of the Helmi stream in our sample. These stars can pave the way for the accurate chemical characterization of these Galactic substructures. Using the Titans as reference, large stellar surveys will be able to improve the internal calibration of their astrophysical parameters. Ultimately, this sample will help users of data from Gaia and large surveys in reaching their goal of redefining our understanding of stars, stellar systems, and the Milky Way.
- ID:
- ivo://CDS.VizieR/J/ApJ/809/77
- Title:
- Transiting Exoplanet Survey Satellite (TESS)
- Short Name:
- J/ApJ/809/77
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) is a NASA-sponsored Explorer mission that will perform a wide-field survey for planets that transit bright host stars. Here, we predict the properties of the transiting planets that TESS will detect along with the EB stars that produce false-positive photometric signals. The predictions are based on Monte Carlo simulations of the nearby population of stars, occurrence rates of planets derived from Kepler, and models for the photometric performance and sky coverage of the TESS cameras. We expect that TESS will find approximately 1700 transiting planets from 2x10^5^ pre-selected target stars. This includes 556 planets smaller than twice the size of Earth, of which 419 are hosted by M dwarf stars and 137 are hosted by FGK dwarfs. Approximately 130 of the R<2R_{Earth}_ planets will have host stars brighter than Ks=9. Approximately 48 of the planets with R<2R_{Earth}_ lie within or near the habitable zone (0.2<S/S_{Earth}_<2); between 2 and 7 such planets have host stars brighter than Ks=9. We also expect approximately 1100 detections of planets with radii 2-4R_{Earth}_, and 67 planets larger than 4R_{Earth}_. Additional planets larger than 2R_{Earth}_ can be detected around stars that are not among the pre-selected target stars, because TESS will also deliver full-frame images at a 30-minute cadence. The planet detections are accompanied by over 1000 astrophysical false positives. We discuss how TESS data and ground-based observations can be used to distinguish the false positives from genuine planets. We also discuss the prospects for follow-up observations to measure the masses and atmospheres of the TESS planets.
- ID:
- ivo://CDS.VizieR/J/AJ/157/218
- Title:
- Transiting planets near the snow line from Kepler
- Short Name:
- J/AJ/157/218
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive catalog of cool (period P>~2 yr) transiting planet candidates in the 4 yr light curves from the prime Kepler mission. Most of the candidates show only one or two transits and have largely been missed in the original Kepler Object of Interest catalog. Our catalog is based on all known such candidates in the literature, as well as new candidates from the search in this paper, and provides a resource to explore the planet population near the snow line of Sun-like stars. We homogeneously performed pixel-level vetting, stellar characterization with Gaia parallax and archival/Subaru spectroscopy, and light-curve modeling to derive planet parameters and to eliminate stellar binaries. The resulting clean sample consists of 67 planet candidates whose radii are typically constrained to 5%, in which 23 are newly reported. The number of Jupiter-sized candidates (29 with radius r>8 R_{Earth}_) in the sample is consistent with the Doppler occurrence. The smaller candidates are more prevalent (23 with 4<r/R_{Earth}_<8, 15 with r/R_{Earth}_<4) and suggest that long-period Neptune-sized planets are at least as common as the Jupiter-sized ones, although our sample is yet to be corrected for detection completeness. If the sample is assumed to be complete, these numbers imply the occurrence rate of 0.39+/-0.07 planets with 4<r/R_{Earth}_<14 and 2<P/yr<20 per FGK dwarf. The stars hosting candidates with r>4 R_{Earth}_ have systematically higher [Fe/H] than do the Kepler field stars, providing evidence that giant planet-metallicity correlation extends to P>2 yr.
- ID:
- ivo://CDS.VizieR/J/AJ/157/149
- Title:
- Transit parameters for planets around subgiants
- Short Name:
- J/AJ/157/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the discovery of seven new planets and eight planet candidates around subgiant stars, as additions to the known sample of planets around "retired A stars". Among these are the possible first three-planet systems around subgiant stars, HD 163607 and HD 4917. Additionally, we present calculations of possible transit times, durations, depths, and probabilities for all known planets around subgiant (3<logg<4) stars, focused on possible transits during the TESS mission. While most have transit probabilities of 1%-2%, we find that there are three planets with transit probabilities >9%.
- ID:
- ivo://CDS.VizieR/J/AJ/154/64
- Title:
- Transit times of Kepler-448b and Kepler-693b
- Short Name:
- J/AJ/154/64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- I report the discovery of non-transiting close companions to two transiting warm Jupiters (WJs), Kepler-448/KOI-12b (orbital period P=17.9days, radius R_p_=1.23_-0.05_^+0.06^R_Jup_) and Kepler-693/KOI-824b (P=15.4days, R_p_=0.91+/-0.05R_Jup_), via dynamical modeling of their transit timing and duration variations (TTVs and TDVs). The companions have masses of 22_-5_^+7^M_Jup_ (Kepler-448c) and 150_-40_^+60^M_Jup_ (Kepler-693c), and both are on eccentric orbits (e=0.65_-0.09_^+0.13^ for Kepler-448c and e=0.47_-0.06_^+0.11^ for Kepler-693c) with periastron distances of 1.5au. Moderate eccentricities are detected for the inner orbits as well (e=0.34_-0.07_^+0.08^ for Kepler-448b and e=0.2_-0.1_^+0.2^ for Kepler-693b). In the Kepler-693 system, a large mutual inclination between the inner and outer orbits (53_-9_^+7^deg or 134_-10_^+11^deg) is also revealed by the TDVs. This is likely to induce a secular oscillation in the eccentricity of the inner WJ that brings its periastron close enough to the host star for tidal star-planet interactions to be significant. In the Kepler-448 system, the mutual inclination is weakly constrained, and such an eccentricity oscillation is possible for a fraction of the solutions. Thus these WJs may be undergoing tidal migration to become hot Jupiters (HJs), although the migration via this process from beyond the snow line is disfavored by the close-in and massive nature of the companions. This may indicate that WJs can be formed in situ and could even evolve into HJs via high-eccentricity migration inside the snow line.
- ID:
- ivo://CDS.VizieR/J/AJ/159/239
- Title:
- Transmission Spectroscopy Metric of exoplanets
- Short Name:
- J/AJ/159/239
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Recent years have seen increasing interest in the characterization of sub-Neptune-sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD97658 is one of the brightest stars hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four Hubble Space Telescope transits, 12 Spitzer/IRAC transits, and eight Microvariability and Oscillations of Stars Telescope (MOST) transits of this system. Our transmission spectrum has a higher signal-to-noise ratio than those from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1-1.7{mu}m reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are inconclusive, as no model provides an excellent match to our data. Nonetheless, we find that atmospheres with high C/O ratios (C/O~>0.8) and metallicities of ~>100 solar metallicity are favored. We combine the mid-transit times from all of the new Spitzer and MOST observations and obtain an updated orbital period of P=9.489295{+/-}0.000005, with a best-fit transit time center at T0=2456361.80690{+/-}0.00038(BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34{+/-}2days) and stellar activity cycle (9.6yr) of the host star HD97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000K and with sizes between 1R_{Earth}_ and 4R_{Earth}_. We find that at least a third of small planets cooler than 1000K can be well characterized using James Webb Space Telescope, and of those, HD97658b is ranked fifth, meaning that it remains a high-priority target for atmospheric characterization.
- ID:
- ivo://CDS.VizieR/J/AJ/157/211
- Title:
- Unresolved binaries in TESS with speckle imaging
- Short Name:
- J/AJ/157/211
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) is conducting a two-year wide-field survey searching for transiting exoplanets around nearby bright stars that will be ideal for follow-up characterization. To facilitate studies of planet compositions and atmospheric properties, accurate and precise planetary radii need to be derived from the transit light curves. Since 40%-50% of exoplanet host stars are in multiple star systems, however, the observed transit depth may be diluted by the flux of a companion star, causing the radius of the planet to be underestimated. High angular resolution imaging can detect companion stars that are not resolved in the TESS Input Catalog, or by seeing-limited photometry, to validate exoplanet candidates and derive accurate planetary radii. We examine the population of stellar companions that will be detectable around TESS planet candidate host stars, and those that will remain undetected, by applying the detection limits of speckle imaging to the simulated host star populations of Sullivan et al. (2015, J/ApJ/809/77) and Barclay et al. (2018, J/ApJS/239/2). By detecting companions with contrasts of {Delta}m~<7-9 and separations of ~0.02"-1.2", speckle imaging can detect companion stars as faint as early M stars around A-F stars and stars as faint as mid-M around G-M stars, as well as up to 99% of the expected binary star distribution for systems located within a few hundred parsecs.