- ID:
- ivo://CDS.VizieR/J/ApJS/207/5
- Title:
- YSOs in LDN 1641 with Hectochelle spectra
- Short Name:
- J/ApJS/207/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M_*_/M_{sun}_){approx}-0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.
« Previous |
461 - 464 of 464
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/714/778
- Title:
- YSOs in the Serpens Molecular Cloud
- Short Name:
- J/ApJ/714/778
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35um) spectra of a complete flux-limited sample (>=3mJy at 8um) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and classified. Background stars (with slope consistent with a reddened stellar spectrum and silicate features in absorption), galaxies (with redshifted polycyclic aromatic hydrocarbon (PAH) features), and a planetary nebula (with high ionization lines) amount to 22% of contamination in this sample, leaving 115 true YSOs. Sources with rising spectra and ice absorption features, classified as embedded Stage I protostars, amount to 18% of the sample. The remaining 82% (94) of the disk sources are analyzed in terms of spectral energy distribution shapes, PAHs, and silicate features. The presence, strength, and shape of these silicate features are used to infer disk properties for these systems. About 8% of the disks have 30/13um flux ratios consistent with cold disks with inner holes or gaps, and 3% of the disks show PAH emission.
- ID:
- ivo://CDS.VizieR/J/ApJ/822/79
- Title:
- YSOs search in LDN 1340 in optical
- Short Name:
- J/ApJ/822/79
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have performed an optical spectroscopic and photometric search for young stellar objects associated with the molecular cloud Lynds 1340, and examined the structure of the cloud by constructing an extinction map, based on SDSS data. The new extinction map suggests a shallow, strongly fragmented cloud, having a mass of some 3700M_{sun}_. Longslit spectroscopic observations of the brightest stars over the area of L1340 revealed that the most massive star associated with L1340 is a B4-type, ~5M_{sun}_ star. The new spectroscopic and photometric data of the intermediate-mass members led to a revised distance of 825_-80_^+110^pc, and revealed seven members of the young stellar population with M>~2M_{sun}_. Our search for H{alpha} emission line stars, conducted with the Wide Field Grism Spectrograph 2 on the 2.2m telescope of the University of Hawaii and covering a 30'x40' area, resulted in the detection of 75 candidate low-mass pre-main sequence stars, 58 of which are new. We constructed spectral energy distributions (SEDs) of our target stars, based on SDSS, 2MASS, Spitzer, and WISE photometric data, derived their spectral types, extinctions, and luminosities from BVRIJ fluxes, estimated masses by means of pre-main sequence evolutionary models, and examined the disk properties utilizing the 2-24{mu}m interval of the SED. We measured the equivalent width of the H{alpha} lines and derived accretion rates. The optically selected sample of pre-main sequence stars has a median effective temperature of 3970K, a stellar mass of 0.7M_{sun}_, and an accretion rate of 7.6x10^-9^M_{sun}_/yr.
- ID:
- ivo://CDS.VizieR/J/ApJ/753/149
- Title:
- YSOVAR: six eclipsing binaries in Orion
- Short Name:
- J/ApJ/753/149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Eclipsing binaries (EBs) provide critical laboratories for empirically testing predictions of theoretical models of stellar structure and evolution. Pre-main-sequence (PMS) EBs are particularly valuable, both due to their rarity and the highly dynamic nature of PMS evolution, such that a dense grid of PMS EBs is required to properly calibrate theoretical PMS models. Analyzing multi-epoch, multi-color light curves for ~2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have identified 12 stars whose light curves show eclipse features. Four of these 12 EBs are previously known. Supplementing our light curves with follow-up optical and near-infrared spectroscopy, we establish two of the candidates as likely field EBs lying behind the ONC. We confirm the remaining six candidate systems, however, as newly identified ONC PMS EBs. These systems increase the number of known PMS EBs by over 50% and include the highest mass ({theta}^1^ Ori E, for which we provide a complete set of well-determined parameters including component masses of 2.807 and 2.797M_{sun}_) and longest-period (ISOY J053505.71-052354.1, P~20 days) PMS EBs currently known. In two cases ({theta}^1^ Ori E and ISOY J053526.88-044730.7), enough photometric and spectroscopic data exist to attempt an orbit solution and derive the system parameters. For the remaining systems, we combine our data with literature information to provide a preliminary characterization sufficient to guide follow-up investigations of these rare, benchmark systems.