- ID:
- ivo://CDS.VizieR/J/A+A/614/A12
- Title:
- VLTI/PIONIER observations of CE Tauri
- Short Name:
- J/A+A/614/A12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Red supergiant stars represent one of the latest stages of the evolution of massive stars. Their photospheric convection may play an important role in the launching mechanism of their mass loss. Yet, its characteristics and dynamics are poorly constrained. By observing red supergiant stars with near infrared interferometry at different epochs, we expect to unveil the evolution of bright convective features on their stellar surface. We observed the M2Iab-Ib red supergiant star CE Tau with the VLTI/PIONIER instrument in the H band at two different epochs separated by one month. We derive the angular diameter of the star, basic stellar parameters and reconstruct two reliable images of its H band photosphere. The contrast of the convective pattern of the reconstructed images is 5+/-1% and 6+/-1 % for our two epochs of observation. The stellar photosphere shows few changes between the two epochs. The contrast of the convective pattern is below the average contrast variations obtained on 30 randomly chosen snapshots of the best matching 3D radiative hydrodynamics simulation: 23+/-1% for the original simulation images, and 16+/-1% for the maps degraded to the reconstruction resolution. We offer two hypotheses to explain this observation: CE Tau may be experiencing a quiet convective activity episode or it could be a consequence of its warmer effective temperature (hence its smaller radius) compared to the simulation.
« Previous |
91 - 97 of 97
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/600/A81
- Title:
- VLTS. 30Dor O giants and supergiants
- Short Name:
- J/A+A/600/A81
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Tarantula region in the Large Magellanic Cloud contains the richest population of spatially resolved massive O-type stars known so far. This unmatched sample offers an opportunity to test models describing their main-sequence evolution and mass-loss properties. Using ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to determine stellar, photospheric and wind properties of 72 presumably single O-type giants, bright giants and supergiants and to confront them with predictions of stellar evolution and of line-driven mass-loss theories. We apply an automated method for quantitative spectroscopic analysis of O stars combining the non-LTE stellar atmosphere model FASTWIND with the genetic fitting algorithm PIKAIA to determine the following stellar properties: effective temperature, surface gravity, mass-loss rate, helium abundance, and projected rotational velocity. The latter has been constrained without taking into account the contribution from macro-turbulent motions to the line broadening. We present empirical effective temperature versus spectral subtype calibrations at LMC-metallicity for giants and supergiants. The calibration for giants shows a +1kK offset compared to similar Galactic calibrations; a shift of the same magnitude has been reported for dwarfs. The supergiant calibrations, though only based on a handful of stars, do not seem to indicate such an offset. The presence of a strong upturn at spectral type O3 and earlier can also not be confirmed by our data. In the spectroscopic and classical Hertzsprung-Russell diagrams, our sample O stars are found to occupy the region predicted to be the core hydrogen-burning phase by state-of-the-art models. For stars initially more massive than approximately 60M_{sun}_ the giant phase already appears relatively early on in the evolution; the supergiant phase develops later. Bright giants, however, are not systematically positioned between giants and supergiants at M_init_>25M_{sun}. At masses below 60M_{sun} the dwarf phase clearly precedes the giant and supergiant phases; however this behavior seems to break down at $M_init_<18M_{sun}_. Here, stars classified as late O III and II stars occupy the region where O9.5-9.7V stars are expected, but where few such late O V stars are actually seen. Though we can not exclude that these stars represent a physically distinct group, this behaviour may reflect an intricacy in the luminosity classification at late O spectral subtype. Indeed, on the basis of a secondary classification criterion, the relative strength of SiIV to HeI absorption lines, these stars would have been assigned a luminosity class IV or V. Except for five stars, the helium abundance of our sample stars is in agreement with the initial LMC composition. This outcome is independent of their projected spin rates. The aforementioned five stars present moderate projected rotational velocities (i.e., vrot<200km/s) and hence do not agree with current predictions of rotational mixing in main-sequence stars. They may potentially reveal other physics not included in the models such as binary-interaction effects. Adopting theoretical results for the wind velocity law, we find modified wind momenta for LMC stars that are ~0.3dex higher than earlier results. For stars brighter than 10^5^L_[sun}_, that is, in the regime of strong stellar winds, the measured (unclumped) mass-loss rates could be considered to be in agreement with line-driven wind predictions if the clump volume filling factors were f_V_~1/8 to 1/6.
- ID:
- ivo://CDS.VizieR/J/AJ/153/115
- Title:
- VLT/SINFONI observations of MIPSGAL "bubbles"
- Short Name:
- J/AJ/153/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Very Large Telescope/Spectrograph for INtegral Field Observations in the Near Infrared H- and K-band spectra of potential central stars within the inner 8"-by-8" regions of 55 MIPSGAL "bubbles" (MBs), sub-arcminute circumstellar shells discovered in the mid-IR survey of the Galactic plane with Spitzer/MIPS. At magnitudes brighter than 15, we detect a total of 230 stars in the K band and 179 stars in the H band. We spectrally identify 145 stars in all but three MBs, with average magnitudes of 13.8 and 12.7 respectively, using spectral libraries and previous studies of near-IR stellar spectra. We also use tabulated intrinsic stellar magnitudes and colors to derive distances and extinction values, and to better constrain the classifications of the stars. We reliably identify the central sources for 21 of the 55 MBs, which we classify as follows: one Wolf-Rayet, three luminous blue variable candidates, four early-type (O to F), and 15 late-type (G to M) stars. The 21 central sources are, on average, one magnitude fainter than these in the most recent study of MBs, and we notice a significant drop in the fraction of massive star candidates. For the 34 remaining MBs in our sample, we are unable to identify the central sources due to confusion, low spectroscopic signal-to-noise ratio, and/or lack of detections in the images near the centers of the bubbles. We discuss how our findings compare with previous studies and support the trend, for the most part, between the shells' morphologies in the mid-IR and central sources spectral types.
- ID:
- ivo://CDS.VizieR/J/ApJ/501/153
- Title:
- VRB photometry of red supergiants
- Short Name:
- J/ApJ/501/153
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Knowledge of the red supergiant (RSG) population of nearby galaxies allows us to probe massive star evolution as a function of metallicity; however, contamination by foreground Galactic dwarfs dominates surveys for red stars in Local Group galaxies beyond the Magellanic Clouds. Model atmospheres predict that low-gravity supergiants will have B-V values that are redder by several tenths of a magnitude than foreground dwarfs at a given V-R color, a result that is largely independent of reddening. We conduct a BVR survey of several fields in the Local Group galaxies NGC 6822, M33, and M31 as well as neighboring control fields and identify RSG candidates from CCD photometry. The survey is complete to V=20.5, corresponding to M_V_=-4.5 or an M_bol_ of -6.3 for the reddest stars. Follow-up spectroscopy at the Ca II triplet of 130 stars is used to demonstrate that our photometric criterion for identifying RSGs is highly successful (96% for stars brighter than V=19.5; 82% for V=19.5-20.5). Classification spectra are also obtained for a number of stars in order to calibrate color with spectral type empirically.
- ID:
- ivo://CDS.VizieR/J/A+A/592/A76
- Title:
- VY CMa ALMA NaCl images
- Short Name:
- J/A+A/592/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. We aim to study the inner-wind structure (R<250R*) of the well-known red supergiant VY CMa, the archetype for the class of luminous red supergiant stars experiencing high mass loss. Specifically, the objective is to unravel the density structure in the inner envelope and to examine the chemical interaction between gas and dust species. We analyse high spatial resolution (~0.24"x0.13") ALMA Science Verification (SV) data in band 7, in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio.
- ID:
- ivo://CDS.VizieR/J/AJ/146/162
- Title:
- Wolf-Rayet and RSG stars in M101. I. HST photometry
- Short Name:
- J/AJ/146/162
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Assembling a catalog of at least 10000 Wolf-Rayet (W-R) stars is an essential step in proving (or disproving) that these stars are the progenitors of Type Ib and Type Ic supernovae. To this end, we have used the Hubble Space Telescope (HST) to carry out a deep, HeII optical narrowband imaging survey of the ScI spiral galaxy M101. Almost the entire galaxy was imaged with the unprecedented depth and resolution that only the HST affords. Differenced with archival broadband images, the narrowband images allow us to detect much of the W-R star population of M101. We describe the extent of the survey and our images, as well as our data reduction procedures. A detailed broadband-narrowband imaging study of a field east of the center of M101, containing the giant star-forming region NGC5462, demonstrates our completeness limits, how we find W-R candidates, their properties and spatial distribution, and how we rule out most contaminants. We use the broadband images to locate luminous red supergiant (RSG) candidates. The spatial distributions of the W-R and RSG stars near NGC 5462 are strikingly different. W-R stars dominate the complex core, while RSGs dominate the complex halo. Future papers in this series will describe and catalog more than a thousand W-R and RSG candidates that are detectable in our images, as well as spectra of many of those candidates.
- ID:
- ivo://CDS.VizieR/J/ApJ/703/441
- Title:
- Yellow supergiants in M31
- Short Name:
- J/ApJ/703/441
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The yellow supergiant (F- and G-type) content of nearby galaxies can provide a critical test of stellar evolution theory, bridging the gap between the hot, massive stars and the cool red supergiants. But, this region of the color-magnitude diagram is dominated by foreground contamination, requiring membership to somehow be determined. Fortunately, the large negative systemic velocity of M31, coupled to its high rotation rate, provides the means for separating the contaminating foreground dwarfs from the bona fide yellow supergiants within M31. We obtained radial velocities of ~2900 individual targets within the correct color-magnitude range corresponding to masses of 12M_{sun}_ and higher. A comparison of these velocities to those expected from M31's rotation curve reveals 54 rank-1 (near certain) and 66 rank-2 (probable) yellow supergiant members, indicating a foreground contamination >=96%. We expect some modest contamination from Milky Way halo giants among the remainder, particularly for the rank-2 candidates, and indeed follow-up spectroscopy of a small sample eliminates four rank 2's while confirming five others.