- ID:
- ivo://CDS.VizieR/J/ApJ/727/53
- Title:
- Red supergiant stars in the LMC. I.
- Short Name:
- J/ApJ/727/53
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From previous samples of red supergiants (RSGs) by various groups, 191 objects are assembled to compose a large sample of RSG candidates in LMC. For 189 of them, the identity as an RSG is verified by their brightness and color indexes in several near- and mid-infrared bands related to the Two Micron All Sky Survey (2MASS) JHKs bands and the Spitzer/IRAC and Spitzer/MIPS bands. From the visual time-series photometric observations by the ASAS and MACHO projects which cover nearly 8-10 years, the period and amplitude of light variation are analyzed carefully using both the phase dispersion minimization and Period04 (Lenz, 2004CoAst.144...41L) methods.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/616/A175
- Title:
- Red supergiant stars in the LMC. II.
- Short Name:
- J/A+A/616/A175
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The characteristics of infrared properties and mid-infrared (MIR) variability of red supergiant (RSG) stars in the Large Magellanic Cloud (LMC) are analyzed based on 12 bands of near-infrared (NIR) to MIR co-added data from 2MASS, Spitzer and WISE, and ~6.6 years of MIR time-series data collected by the ALLWISE and NEOWISE-R projects. 773 RSGs candidates are compiled from the literature and verified by using the color-magnitude diagram (CMD), spectral energy distribution (SED) and MIR variability. About 15% of valid targets in the IRAC1-IRAC2/IRAC2-IRAC3 diagram may show Polycyclic Aromatic Hydrocarbon (PAH) emission. We show that arbitrary dereddening Q parameters related to the IRAC4, S9W, WISE3, WISE4 and MIPS24 bands could be constructed based on a precise measurement of MIR interstellar extinction law. Several peculiar outliers in our sample are discussed, in which one outlier might be a RSG right before the explosion or an extreme asymptotic giant branch (AGB) star in the very late evolutionary stage based on the MIR spectrum and photometry. There are 744 identified RSGs in the final sample having both the WISE1- and WISE2-band time-series data. The results show that the MIR variability is increasing along with the increasing of brightness. There is a relatively tight correlation between the MIR variability, mass loss rate (MLR; in terms of K_S-WISE3 color) and the warm dust/continuum (in terms of WISE4 magnitude/flux), where the MIR variability is evident for the targets with K_S-WISE3>1.0mag and WISE4<6.5mag, while the rest of the targets show much smaller MIR variability. The MIR variability is also correlated with the MLR for which targets with larger variability also show larger MLR with an approximate upper limit of -6.1M_{sun}_/yr. The variability and luminosity may both be important for the MLR since the WISE4-band flux is increasing exponentially along with the degeneracy of luminosity and variability. The identified RSG sample has been compared with the theoretical evolutionary models and shown that the discrepancy between observation and evolutionary models can be mitigated by considering both variability and extinction.
- ID:
- ivo://CDS.VizieR/J/ApJ/754/35
- Title:
- Red supergiant stars in the SMC. II.
- Short Name:
- J/ApJ/754/35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The characteristics of light variation of red supergiant (RSG) stars in the Small Magellanic Cloud (SMC) are analyzed based on the nearly 8-10 year data collected by the ASAS and MACHO projects. The 126 identified RSGs are classified into five categories accordingly: 20 with poor photometry, 55 with no reliable period, 6 with semi-regular variation, 15 with a long secondary period (LSP) and distinguishable short period, and 30 with only an LSP. For the semi-regular variables and the LSP variables with distinguishable short period, the K_S_-band period-luminosity (P-L) relation is analyzed and compared with that of the Galaxy, the Large Magellanic Cloud, and M33. It is found that the RSGs in these galaxies obey a similar P-L relation except for those in the Galaxy. In addition, the P-L relations in the infrared bands, namely, the 2MASS JHK_S_, Spitzer/IRAC, and Spitzer/MIPS 24 {mu}m bands, are derived with high reliability. The best P-L relation occurs in the Spitzer/IRAC [3.6] and [4.5] bands. Based on the comparison with the theoretical calculation of the P-L relation, the mode of pulsation of RSGs in the SMC is suggested to be the first-overtone radial mode.
- ID:
- ivo://CDS.VizieR/J/A+A/317/871
- Title:
- Revised spectral types of B-supergiants in the SMC
- Short Name:
- J/A+A/317/871
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The problem of the classification of metal poor stars, such as occur in the Small Magellanic Cloud (SMC), is discussed with reference to the applicability of the MK system in such an environment. An alternative method is presented here and applied to B-type supergiants in the SMC. A local reference system is first devised and then a transformation to MK spectral types is determined by comparing the trends of metal line strengths in these two systems. For the determination of the luminosity class, we emphasize the need to use the hydrogen Balmer line strengths independently of metal line-strength considerations. This method is used to determine new spectral types for 64 supergiants in the SMC, 75% of the sample requiring classifications different from previous findings. These new types result in much improved line strength - spectral type correlations for He, C, N, O, Mg and Si. Corresponding changes in the distribution of these stars in the Hertzsprung-Russell diagram of the SMC reveal more clearly than before the existence of a ridge which may be the SMC analogue of a similar feature found for the LMC by Fitzpatrick & Garmany (1990ApJ...363..119F). The group of very luminous supergiants lying above this ridge includes the LBV AV415 (R40), a property which this object has in common with LBVs in the Large Magellanic Cloud. Also, for the first time, clear examples of BN/BC supergiants are found in the SMC.
- ID:
- ivo://CDS.VizieR/J/ApJ/826/224
- Title:
- RSG and foreground candidates in M31
- Short Name:
- J/ApJ/826/224
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the red supergiant (RSG) population of M31, obtaining the radial velocities of 255 stars. These data substantiate membership of our photometrically selected sample, demonstrating that Galactic foreground stars and extragalactic RSGs can be distinguished on the basis of B-V, V-R two-color diagrams. In addition, we use these spectra to measure effective temperatures and assign spectral types, deriving physical properties for 192 RSGs. Comparison with the solar metallicity Geneva evolutionary tracks indicates astonishingly good agreement. The most luminous RSGs in M31 are likely evolved from 25-30 M_{sun}_ stars, while the vast majority evolved from stars with initial masses of 20 M_{sun}_ or less. There is an interesting bifurcation in the distribution of RSGs with effective temperatures that increases with higher luminosities, with one sequence consisting of early K-type supergiants, and with the other consisting of M-type supergiants that become later (cooler) with increasing luminosities. This separation is only partially reflected in the evolutionary tracks, although that might be due to the mis-match in metallicities between the solar Geneva models and the higher-than-solar metallicity of M31. As the luminosities increase the median spectral type also increases; i.e., the higher mass RSGs spend more time at cooler temperatures than do those of lower luminosities, a result which is new to this study. Finally we discuss what would be needed observationally to successfully build a luminosity function that could be used to constrain the mass-loss rates of RSGs as our Geneva colleagues have suggested.
- ID:
- ivo://CDS.VizieR/J/ApJ/900/118
- Title:
- RSGs in the LMC & sp. follow-up for LMC & SMC
- Short Name:
- J/ApJ/900/118
- Date:
- 20 Jan 2022 11:32:23
- Publisher:
- CDS
- Description:
- The binary fraction of unevolved massive stars is thought to be 70%-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete sample of RSGs in the Large Magellanic Cloud (LMC) using new spectroscopic observations and archival UV, IR, and broadband optical photometry. We find 4090 RSGs with logL/L_{sun}_>3.5, with 1820 of them having logL/L_{sun}_>4, which we believe is our completeness limit. We additionally spectroscopically confirmed 38 new RSG + B-star binaries in the LMC, bringing the total known up to 55. We then estimated the binary fraction using a k-nearest neighbors algorithm that classifies stars as single or binary based on photometry with a spectroscopic sample as a training set. We take into account observational biases such as line-of-sight stars and binaries in eclipse while also calculating model- dependent corrections for RSGs with companions that our observations were not designed to detect. Based on our data, we find an initial result of 13.5_-6.67_^+7.56^% for RSGs with O- or B-type companions. Using the Binary Population and Spectral Synthesis models to correct for unobserved systems, this corresponds to a total RSG binary fraction of 19.5_-6.7_^+7.6^% . This number is in broad agreement with what we would expect given an initial OB binary distribution of 70%, a predicted merger fraction of 20%-30%, and a binary interaction fraction of 40%-50%.
77. RSGs in the SMC
- ID:
- ivo://CDS.VizieR/J/A+A/639/A116
- Title:
- RSGs in the SMC
- Short Name:
- J/A+A/639/A116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the most comprehensive red supergiant (RSG) sample for the Small Magellanic Cloud (SMC) to date, including 1239 RSG candidates. The initial sample was derived based on a source catalog for the SMC with conservative ranking. Additional spectroscopic RSGs were retrieved from the literature, and RSG candidates were selected based on the inspection of Gaia and 2MASS color-magnitude diagrams (CMDs). We estimate that there are in total ~1800 or more RSGs in the SMC. We purify the sample by studying the infrared CMDs and the variability of the objects, though there is still an ambiguity between asymptotic giant branch stars (AGBs) and RSGs at the red end of our sample. One heavily obscured target was identified based on multiple near-IR (NIR) and mid-IR (MIR) CMDs. The investigation of color-color diagrams (CCDs) shows that there are fewer RSGs candidates (~4%) showing PAH emission features compared to the Milky Way and LMC (~15%). The MIR variability of RSG sample increases with luminosity. We separate the RSG sample into two subsamples (risky and safe), and identify one M5e AGB star in the risky subsample based on simultaneous inspection of variabilities, luminosities, and colors. The degeneracy of mass loss rate (MLR), variability, and luminosity of the RSG sample is discussed, indicating that most of the targets with high variability are also the bright ones with high MLR. Some targets show excessive dust emission, which may be related to previous episodic mass loss events. We also roughly estimate the total gas and dust budget produced by entire RSG population as ~1.9^+2.4^_-1.1_x10^-6^M_{sun}_/yr in the most conservative case, according to the derived MLR from IRAC1-IRAC4 color. Based on the MIST models, we derive a linear relation between T_eff_ and observed J-Ks color with reddening correction for the RSG sample. By using a constant bolometric correction and this relation, the Geneva evolutionary model is compared with our RSG sample, showing a good agreement and a lower initial mass limit of ~7M_{sun}_ for the RSG population. Finally, we compare the RSG sample in the SMC and the LMC. Despite the incompleteness of LMC sample in the faint end, the result indicates that the LMC sample always shows redder color (except for the IRAC1-IRAC2 and WISE1-WISE2 colors due to CO absorption) and higher variability than the SMC sample, which is likely due to a positive relation between MLR, variability and the metallicity.
- ID:
- ivo://CDS.VizieR/J/A+A/395/97
- Title:
- RV and vsini of Ib supergiant stars
- Short Name:
- J/A+A/395/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Rotational velocity vsini and mean radial velocity are presented for a sample of 232 Ib supergiant stars covering the spectral region F, G and K. This work is the second part of the large survey carried out with the CORAVEL spectrometer to establish the behavior of the rotation for stars evolving off the main sequence (De Medeiros & Mayor, 1999, Cat. <J/A+AS/139/433>). These data will add constraints to the study of the rotational behavior in evolved stars, as well as solid information concerning tidal interactions in binary systems and on the link between rotation, chemical abundance and activity in stars of intermediate masses.
- ID:
- ivo://CDS.VizieR/J/MNRAS/457/2814
- Title:
- SAGE SMC evolved stars candidates
- Short Name:
- J/MNRAS/457/2814
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The life cycle of dust in the interstellar medium is heavily influenced by outflows from asymptotic giant branch (AGB) and red supergiant (RSG) stars, a large fraction of which is contributed by a few very dusty sources. We compute the dust input to the Small Magellanic Cloud (SMC) by fitting the multi-epoch mid-infrared spectral energy distributions of AGB/RSG candidates with models from the Grid of RSG and AGB ModelS grid, allowing us to estimate the luminosities and dust-production rates (DPRs) of the entire population. By removing contaminants, we guarantee a high-quality data set with reliable DPRs and a complete inventory of the dustiest sources. We find a global AGB/RSG dust-injection rate of (1.3+/-0.1)x10^-6^M_{sun}_/yr, in agreement with estimates derived from mid-infrared colours and excess fluxes. As in the Large Magellanic Cloud, a majority (66 per cent) of the dust arises from the extreme AGB stars, which comprise only ~7 per cent of our sample. A handful of far-infrared sources, whose 24{mu}m fluxes exceed their 8{mu}m fluxes, dominate the dust input. Their inclusion boosts the global DPR by ~1.5x, making it necessary to determine whether they are AGB stars. Model assumptions, rather than missing data, are the major sources of uncertainty; depending on the choice of dust shell expansion speed and dust optical constants, the global DPR can be up to ~10 times higher. Our results suggest a non-stellar origin for the SMC dust, barring as yet undiscovered evolved stars with very high DPRs.
80. S Dor variables
- ID:
- ivo://CDS.VizieR/J/A+A/366/508
- Title:
- S Dor variables
- Short Name:
- J/A+A/366/508
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The goal in writing this paper is five fold: (1) to summarize the scientific achievements in the 20th century on S Dor variables (or LBVs); (2) to present an inventory of these variables in the Galaxy and the Magellanic Clouds with a description of their physical state and instability properties; (3) to emphasize the photometric achievements of the various types of instabilities. Generally this seems to be a neglected item resulting in a number of misunderstandings continuously wandering through literature; (4) to investigate the structure of the S Dor-area on the HR-diagram; (5) to estimate the total numbers of S Dor variables in the three stellar systems.