- ID:
- ivo://CDS.VizieR/J/ApJ/860/39
- Title:
- HST observations of nearby core-collapse SNe
- Short Name:
- J/ApJ/860/39
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We age-date the stellar populations associated with 12 historic nearby core-collapse supernovae (CCSNe) and two supernova impostors; from these ages, we infer their initial masses and associated uncertainties. To do this, we have obtained new Hubble Space Telescope imaging covering these CCSNe. Using these images, we measure resolved stellar photometry for the stars surrounding the locations of the SNe. We then fit the color-magnitude distributions of this photometry with stellar evolution models to determine the ages of any young existing populations present. From these age distributions, we infer the most likely progenitor masses for all of the SNe in our sample. We find ages between 4 and 50Myr, corresponding to masses from 7.5 to 59M_{sun}_. There were no SNe that lacked a local young population. Our sample contains four SNe Ib/c; their masses have a wide range of values, suggesting that the progenitors of stripped-envelope SNe are binary systems. Both impostors have masses constrained to be <~7.5M_{sun}_. In cases with precursor imaging measurements, we find that age-dating and precursor imaging give consistent progenitor masses. This consistency implies that, although the uncertainties for each technique are significantly different, the results of both are reliable to the measured uncertainties. We combine these new measurements with those from our previous work and find that the distribution of 25 core-collapse SNe progenitor masses is consistent with a standard Salpeter power-law mass function, no upper mass cutoff, and an assumed minimum mass for core-collapse of 7.5M_{sun}_. The distribution is consistent with a minimum mass <9.5M_{sun}_.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/826/56
- Title:
- HST/WFC3 obs. of Cepheids in SN Ia host gal.
- Short Name:
- J/ApJ/826/56
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) to reduce the uncertainty in the local value of the Hubble constant from 3.3% to 2.4%. The bulk of this improvement comes from new near-infrared (NIR) observations of Cepheid variables in 11 host galaxies of recent type Ia supernovae (SNe Ia), more than doubling the sample of reliable SNe Ia having a Cepheid-calibrated distance to a total of 19; these in turn leverage the magnitude-redshift relation based on ~300 SNe Ia at z<0.15. All 19 hosts as well as the megamaser system NGC 4258 have been observed with WFC3 in the optical and NIR, thus nullifying cross-instrument zeropoint errors in the relative distance estimates from Cepheids. Other noteworthy improvements include a 33% reduction in the systematic uncertainty in the maser distance to NGC 4258, a larger sample of Cepheids in the Large Magellanic Cloud (LMC), a more robust distance to the LMC based on late-type detached eclipsing binaries (DEBs), HST observations of Cepheids in M31, and new HST-based trigonometric parallaxes for Milky Way (MW) Cepheids. We consider four geometric distance calibrations of Cepheids: (i) megamasers in NGC 4258, (ii) 8 DEBs in the LMC, (iii) 15 MW Cepheids with parallaxes measured with HST/FGS, HST/WFC3 spatial scanning and/or Hipparcos, and (iv) 2 DEBs in M31. The Hubble constant from each is 72.25+/-2.51, 72.04+/-2.67, 76.18+/-2.37, and 74.50+/-3.27km/s/Mpc, respectively. Our best estimate of H_0_=73.24+/-1.74km/s/Mpc combines the anchors NGC 4258, MW, and LMC, yielding a 2.4% determination (all quoted uncertainties include fully propagated statistical and systematic components). This value is 3.4{sigma} higher than 66.93+/-0.62km/s/Mpc predicted by {Lambda}CDM with 3 neutrino flavors having a mass of 0.06eV and the new Planck data, but the discrepancy reduces to 2.1{sigma} relative to the prediction of 69.3+/-0.7km/s/Mpc based on the comparably precise combination of WMAP+ACT+SPT+BAO observations, suggesting that systematic uncertainties in CMB radiation measurements may play a role in the tension. If we take the conflict between Planck high-redshift measurements and our local determination of H_0_ at face value, one plausible explanation could involve an additional source of dark radiation in the early universe in the range of {Delta}N_eff_~0.4-1. We anticipate further significant improvements in H_0_ from upcoming parallax measurements of long-period MW Cepheids.
- ID:
- ivo://CDS.VizieR/J/ApJ/613/200
- Title:
- Hubble Higher z Supernova Search, HHZSS
- Short Name:
- J/ApJ/613/200
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results from the Hubble Higher z Supernova Search, the first space-based open field survey for supernovae (SNe). In cooperation with the Great Observatories Origins Deep Survey, we have used the Hubble Space Telescope with the Advanced Camera for Surveys to cover ~300arcmin^2^ in the area of the Chandra Deep Field South and the Hubble Deep Field North on five separate search epochs (separated by ~45day intervals) to a limiting magnitude of F850LP~26. These deep observations have allowed us to discover 42 SNe in the redshift range 0.2<z<1.6. As these data span a large range in redshift, they are ideal for testing the validity of Type Ia supernova progenitor models with the distribution of expected "delay times" from progenitor star formation to Type Ia SN explosion, and the SN rates these models predict. Through a Bayesian maximum likelihood test, we determine which delay-time models best reproduce the redshift distribution of SNe Ia discovered in this survey. We find that models that require a large fraction of "prompt" (less than 2Gyr) SNe Ia poorly reproduce the observed redshift distribution and are rejected at greater than 95% confidence. We find that Gaussian models best fit the observed data for mean delay times in the range of 2-4Gyr.
- ID:
- ivo://CDS.VizieR/J/MNRAS/449/1753
- Title:
- I-band light curves of SNe II from OGLE-IV
- Short Name:
- J/MNRAS/449/1753
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study a sample of 11 Type II supernovae (SNe) discovered by the OGLE-IV survey. All objects have well-sampled I-band light curves, and at least one spectrum. We find that two or three of the 11 SNe have a declining light curve, and spectra consistent with other SNe II-L, while the rest have plateaus that can be as short as 70 d, unlike the 100 d typically found in nearby galaxies. The OGLE SNe are also brighter, and show that magnitude-limited surveys find SNe that are different than usually found in nearby galaxies. We discuss this sample in the context of understanding Type II SNe as a class and their suggested use as standard candles.
- ID:
- ivo://CDS.VizieR/J/ApJ/723/47
- Title:
- IfA Deep SN rates
- Short Name:
- J/ApJ/723/47
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The IfA Deep Survey uncovered ~130 thermonuclear supernova (TN SN, i.e., Type Ia) candidates at redshifts from z=0.1 out to beyond z=1. The TN SN explosion rates derived from these data have been controversial, conflicting with evidence emerging from other surveys. This work revisits the IfA Deep Survey to re-evaluate the photometric evidence. Applying the SOFT (Supernova Ontology with Fuzzy Templates) program to the light curves of all SN candidates, we derive new classification grades and redshift estimates. We find a volumetric rate for z~0.5 that is substantially smaller than the originally published values, bringing the revised IfA Deep rate into good agreement with other surveys. With our improved photometric analysis techniques, we are able to confidently extend the rate measurements to higher redshifts and we find a steadily increasing TN SN rate, with no indication of a peak out to z=1.05.
- ID:
- ivo://CDS.VizieR/J/ApJ/686/749
- Title:
- Improved cosmological constraints from SNe
- Short Name:
- J/ApJ/686/749
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new compilation of Type Ia supernovae (SNe Ia), a new data set of low-redshift nearby-Hubble-flow SNe, and new analysis procedures to work with these heterogeneous compilations. This "Union" compilation of 414 SNe Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older data sets, as well as the recently extended data set of distant supernovae observed with the Hubble Space Telescope (HST). A single, consistent, and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO).
- ID:
- ivo://CDS.VizieR/J/ApJ/659/122
- Title:
- Improved distances to type Ia supernovae
- Short Name:
- J/ApJ/659/122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an updated version of the multicolor light-curve shape method to measure distances to Type Ia supernovae (SNe Ia), incorporating new procedures for K-correction and extinction corrections. We also develop a simple model to disentangle intrinsic color variations and reddening by dust and expand the method to incorporate U-band light curves and to more easily accommodate prior constraints on any of the model parameters. We apply this method to 133 nearby SNe Ia, including 95 objects in the Hubble flow (cz>=2500km/s), which give an intrinsic dispersion of less than 7% in distance. The Hubble flow sample, which is of critical importance to all cosmological uses of SNe Ia, is the largest ever presented with homogeneous distances.
- ID:
- ivo://CDS.VizieR/J/ApJ/731/120
- Title:
- Intrinsic SN Ia light curves
- Short Name:
- J/ApJ/731/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BayeSN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction AV and the ratio of total-to-selective dust absorption RV. For SNe with low dust extinction, A_V_<~0.4, we find R_V_~2.5-2.9, while at high extinctions, A_V_>~1, low values of R_V_<2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11mag for SNe with optical and NIR data versus 0.15mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.
- ID:
- ivo://CDS.VizieR/J/A+A/568/A22
- Title:
- Joint analysis of the SDSS-II and SNLS SNe Ia
- Short Name:
- J/A+A/568/A22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We deliver luminosity-distance measurements from a joint analysis of 740 type-Ia supernovae from the SDSS and SNLS supernova surveys.
- ID:
- ivo://CDS.VizieR/J/ApJ/860/100
- Title:
- LCs of 26 hydrogen-poor superluminous SNe
- Short Name:
- J/ApJ/860/100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the light-curve properties of a sample of 26 spectroscopically confirmed hydrogen-poor superluminous supernovae (SLSNe-I) in the Palomar Transient Factory survey. These events are brighter than SNe Ib/c and SNe Ic-BL, on average, by about 4 and 2mag, respectively. The peak absolute magnitudes of SLSNe-I in rest-frame g band span -22<~M_g_<~-20mag, and these peaks are not powered by radioactive ^56^Ni, unless strong asymmetries are at play. The rise timescales are longer for SLSNe than for normal SNe Ib/c, by roughly 10 days, for events with similar decay times. Thus, SLSNe-I can be considered as a separate population based on photometric properties. After peak, SLSNe-I decay with a wide range of slopes, with no obvious gap between rapidly declining and slowly declining events. The latter events show more irregularities (bumps) in the light curves at all times. At late times, the SLSN-I light curves slow down and cluster around the ^56^Co radioactive decay rate. Powering the late-time light curves with radioactive decay would require between 1 and 10M_{sun}_ of Ni masses. Alternatively, a simple magnetar model can reasonably fit the majority of SLSNe-I light curves, with four exceptions, and can mimic the radioactive decay of ^56^Co, up to ~400days from explosion. The resulting spin values do not correlate with the host-galaxy metallicities. Finally, the analysis of our sample cannot strengthen the case for using SLSNe-I for cosmology.