- ID:
- ivo://xaovo/gaia/q3/cone
- Title:
- Gaia DR3 Lite Cone Search
- Short Name:
- DR3 lite Cone
- Date:
- 25 Jun 2024 10:32:03
- Publisher:
- Xinjiang Astronomical Observatory,CAS
- Description:
- This schema contains data re-published from the official Gaia mirrors (such as ivo://uni-heidelberg.de/gaia/tap) either to support combining its data with local tables (the various Xlite tables) or to make the data more accessible to VO clients (e.g., epoch fluxes).
Number of results to display per page
Search Results
- ID:
- ivo://org.gavo.dc/gaia/q3/cone
- Title:
- Gaia DR3 Lite Cone Search
- Short Name:
- DR3 lite Cone
- Date:
- 27 Dec 2024 08:31:03
- Publisher:
- The GAVO DC team
- Description:
- This schema contains data re-published from the official Gaia mirrors (such as ivo://uni-heidelberg.de/gaia/tap) either to support combining its data with local tables (the various Xlite tables) or to make the data more accessible to VO clients (e.g., epoch fluxes). Other Gaia-related data is found in, among others, the gdr3mock, gdr3spec, gedr3auto, gedr3dist, gedr3mock, and gedr3spur schemas.
- ID:
- ivo://org.gavo.dc/gedr3dist/q/cone
- Title:
- Gaia DR3 Lite Distances Subset Cone Search
- Short Name:
- DR3 lite+dist
- Date:
- 27 Dec 2024 08:31:06
- Publisher:
- The GAVO DC team
- Description:
- This service returns the most important Gaia DR3 gaia_source columns together with robust geometric and photogeometric distances for the ~1.47 billion objects in Bailer-Jones et al's distance catalogue.
- ID:
- ivo://CDS.VizieR/J/A+A/618/A93
- Title:
- Gaia DR2 open clusters in the Milky Way
- Short Name:
- J/A+A/618/A93
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the submilliarcsecond level and homogeneous photometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. We compiled a list of thousands of known or putative clusters from the literature. We then applied an unsupervised membership assignment code, UPMASK, to the Gaia DR2 (Cat. I/345) data contained within the fields of those clusters. We obtained a list of members and cluster parameters for 1229 clusters. As expected, the youngest clusters are seen to be tightly distributed near the Galactic plane and to trace the spiral arms of the Milky Way, while older objects are more uniformly distributed, deviate further from the plane, and tend to be located at larger Galactocentric distances. Thanks to the quality of Gaia DR2 astrometry, the fully homogeneous parameters derived in this study are the most precise to date. Furthermore, we report on the serendipitous discovery of 60 new open clusters in the fields analysed during this study.
- ID:
- ivo://CDS.VizieR/VII/285
- Title:
- Gaia DR2 quasar and galaxy classification
- Short Name:
- VII/285
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We provide probabilistic quasar and galaxy classifications for 2.7 million sources in Gaia Data Release 2. This has been achieved using a supervised classification method (Gaussian Mixture Models) based only on photometric and astrometric data (8 features) in Gaia-DR2. The model is trained empirically to classify objects into three classes - star, quasar, galaxy - for all objects with G>=14.5mag down to the Gaia magnitude limit of G=21.0mag. We provide the probabilities for being a quasar (pqso) and a galaxy (pgal); the probability of being a star is pstar = 1-(pqso+pgal), and all other Gaia data can be obtained by cross-matching Gaia-DR2 using the source identifier. As our main goal is to identify extragalactic objects, we only report objects with pqso+pgal>0.5. These probabilities incorporate a sensible class prior, namely that quasars are 500 times rarer than stars, and that galaxies 7500 times rarer than stars. See the paper for details of the purity and completeness of samples drawn from this catalogue, and for more details of its construction, contents, and validation.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A7
- Title:
- Gaia DR2 radial velocity standard stars catalog
- Short Name:
- J/A+A/616/A7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Radial Velocity Spectrometer (RVS) on board the ESA satellite mission Gaia has no calibration device. Therefore, the radial velocity zero point needs to be calibrated with stars that are proved to be stable at a level of 300m/s during the Gaia observations. We compiled a dataset of ~71000 radial velocity measurements from five high-resolution spectrographs. A catalogue of 4813 stars was built by combining these individual measurements. The zero point was established using asteroids. The resulting catalogue has seven observations per star on average on a typical time baseline of 6yr, with a median standard deviation of 15m/s. A subset of the most stable stars fulfilling the RVS requirements was used to establish the radial velocity zero point provided in Gaia Data Release 2. The stars that were not used for calibration are used to validate the RVS data.
- ID:
- ivo://CDS.VizieR/J/A+A/616/A12
- Title:
- Gaia DR2 sources in GC and dSph
- Short Name:
- J/A+A/616/A12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds. Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community. Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.8^+6.7^_-2.7_x10^11^M_{sun}_ based on the assumption that the Leo~I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud. All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A110
- Title:
- Gaia DR2. Variable stars in CMD
- Short Name:
- J/A+A/623/A110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G<~21mag. We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD).We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses. We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce 'motions'. To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article. Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date. Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars.
- ID:
- ivo://CDS.VizieR/J/MNRAS/482/4570
- Title:
- Gaia DR2 white dwarf candidates
- Short Name:
- J/MNRAS/482/4570
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalogue of white dwarf candidates selected from the second data release of Gaia (DR2). We used a sample of spectroscopically confirmed white dwarfs from the Sloan Digital Sky Survey (SDSS) to map the entire space spanned by these objects in the Gaia Hertzsprung-Russell diagram. We then defined a set of cuts in absolute magnitude, colour, and a number of Gaia quality flags to remove the majority of contaminating objects. Finally, we adopt a method analogous to the one presented in our earlier SDSS photometric catalogues to calculate a probability of being a white dwarf (PWD) for all Gaia sources which passed the initial selection. The final catalogue is composed of 486641 stars with calculated PWD from which it is possible to select a sample of~260000 high-confidence white dwarf candidates in the magnitude range 8<G<21. By comparing this catalogue with a sample of SDSS white dwarf candidates we estimate an upper limit in completeness of 85 per cent for white dwarfs with G<=20mag and Teff>7000K, at high Galactic latitudes (|b|>20deg). However, the completeness drops at low Galactic latitudes, and the magnitude limit of the catalogue varies significantly across the sky as a function of Gaia's scanning law. We also provide the list of objects within our sample with available SDSS spectroscopy.
- ID:
- ivo://CDS.VizieR/II/360
- Title:
- Gaia DR2 x AllWISE catalogue
- Short Name:
- II/360
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second Gaia Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean Gaia G magnitude <20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the Gaia DR2 database with WISE and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars and evolved stars. At a 90% prob- ability threshold we identified 1 129 295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published Gaia Science Alerts. As Gaia measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disk. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30% more of the published Gaia alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future Gaia alerts.