- ID:
- ivo://CDS.VizieR/J/AJ/156/171
- Title:
- Cepheid abund.: multiphase results & spatial gradients
- Short Name:
- J/AJ/156/171
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Parameters and abundances have been derived for 435 Cepheids based on an analysis of 1127 spectra. Results from five or more phases are available for 52 of the program stars. The latter set of stars span periods between 1.5 and 68 days. The parameters and abundances show excellent consistency across phase. For iron, the average range in the determined abundance is 0.11 from these 52 stars. For 163 stars with more than one phase available the average range is 0.07. The variation in effective temperature tracks well with phase, as does the total broadening velocity. The gravity and microturbulent velocity follow phase, but with less variation and regularity. Abundance gradients have been derived using Gaia DR2 (Cat. I/345) parallax data, as well as Bayesian distance estimates based upon Gaia DR2 from Bailer-Jones et al. (2018, Cat. I/347). The abundance gradient derived for iron is d[Fe/H]/dR=-0.05 dex/kpc, similar to gradients derived in previous studies.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/619/A8
- Title:
- Cepheid period-luminosity-metallicity relation
- Short Name:
- J/A+A/619/A8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use parallax data from the Gaia second data release (GDR2), combined with parallax data based on HIPPARCOS and HST data, to derive the period-luminosity-metallicity (PLZ) relation for Galactic classical cepheids (CCs) in the V, K, and Wesenheit WVK bands. An initial sample of 452 CCs are extracted from the literature with spectroscopically derived iron abundances. Reddening values, classifications, pulsation periods, and mean V- and K-band magnitudes are taken from the literature. Based on nine CCs with a goodness-of-fit (GOF) statistic smaller than 8 and with an accurate non-Gaia parallax ({sigma}_{pi}_ comparable to that in GDR2), a parallax zero-point offset of -0.049+/-0.018mas is derived. Selecting a GOF statistic smaller than 8 removes about 40% of the sample most likely related due to binarity. Excluding first overtone and multi-mode cepheids and applying some other criteria reduces the sample to about 200 stars. The derived PL(Z) relations depend strongly on the parallax zero-point offset. The slope of the PL relation is found to be different from the relations in the LMC at the 3{sigma} level. Fixing the slope to the value found in the LMC leads to a distance modulus (DM) to the LMC of order 18.7mag, larger than the canonical distance. The canonical DM of around 18.5 mag would require a parallax zero-point offset of order -0.1mas. Given the strong correlation between zero point, period and metallicity dependence of the PL relation, and the parallax zero-point offset there is no evidence for a metallicity term in the PLZ relation. The GDR2 release does not allow us to improve on the current distance scale based on CCs. The value of and the uncertainty on the parallax zero-point offset leads to uncertainties of order 0.15mag on the distance scale. The parallax zero-point offset will need to be known at a level of 3{mu}as or better to have a 0.01mag or smaller effect on the zero point of the PL relation and the DM to the LMC.
- ID:
- ivo://CDS.VizieR/J/A+A/659/A167
- Title:
- Cepheid Period-Wesenheit-Metallicity relation
- Short Name:
- J/A+A/659/A167
- Date:
- 23 Mar 2022 15:18:20
- Publisher:
- CDS
- Description:
- Classical Cepheids (DCEPs) represent a fundamental tool to calibrate the extragalactic distance scale. However, they are also powerful stellar population tracers, in the context of Galactic studies. The forthcoming Data Release 3 (DR3) of the Gaia mission will allow us to study with unprecedented detail the structure, the dynamics and the chemical properties of the Galactic disc, and in particular of the spiral arms, where most Galactic DCEPs reside. In this paper we aim at quantifying the metallicity dependence of the Galactic DCEPs Period-Wesenheit (PWZ) relation in the Gaia bands. We adopt a sample of 499 DCEPs with metal abundances from high-resolution spectroscopy, in conjunction with Gaia Early Data Release 3 parallaxes and photometry to calibrate a PWZ relation in the Gaia bands. We find a significant metallicity term, of the order of -0.5mag/dex, which is larger than the values measured in the NIR bands by different authors. Our best PWZ relation is W=(-5.988+/-0.018)-(3.176+/-0.044)(logP-1.0)-(0.520+/-0.090)[Fe/H]. We validate our PWZ relations by using the distance to the Large Magellanic Cloud as a benchmark, finding a very good agreement with the geometric distance provided by eclipsing binaries. As an additional test, we evaluate the metallicity gradient of the young Galactic disc, finding -0.0527+/-0.0022dex/kpc, in very good agreement with previous results.
- ID:
- ivo://CDS.VizieR/J/MNRAS/434/2238
- Title:
- Cepheids in open clusters
- Short Name:
- J/MNRAS/434/2238
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Cepheids in open clusters (cluster Cepheids: CCs) are of great importance as zero-point calibrators of the Galactic Cepheid period-luminosity relationship (PLR). We perform an 8-dimensional all-sky census that aims to identify new bona-fide CCs and provide a ranking of membership confidence for known CC candidates according to membership probabilities. The probabilities are computed for combinations of known Galactic open clusters and classical Cepheid candidates, based on spatial, kinematic, and population-specific membership constraints. Data employed in this analysis are taken largely from published literature and supplemented by a year-round observing program on both hemispheres dedicated to determining systemic radial velocities of Cepheids. In total, we find 23 bona-fide CCs, 5 of which are candidates identified for the first time, including an overtone-Cepheid member in NGC 129. We discuss a subset of CC candidates in detail, some of which have been previously mentioned in the literature. Our results indicate unlikely membership for 7 Cepheids that have been previously discussed in terms of cluster membership. We furthermore revisit the Galactic PLR using our bona fide CC sample and obtain a result consistent with the recent calibration by Turner (2010). However, our calibration remains limited mainly by cluster uncertainties and the small number of long-period calibrators. In the near future, Gaia will enable our study to be carried out in much greater detail and accuracy, thanks to data homogeneity and greater levels of completeness.
- ID:
- ivo://CDS.VizieR/J/AJ/157/101
- Title:
- Cloud Atlas: HST/WFC3 NIR spectral library
- Short Name:
- J/AJ/157/101
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs' and hot Jupiters' atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We present a high signal-to-noise spectral library (1.10-1.69 {mu}m) of the thermal emission of 76 brown dwarfs and hot Jupiters. All our spectra have been acquired with the Hubble Space Telescope's Wide Field Camera 3 instrument and its G141 grism. The near-infrared spectral types of these objects range from L4 to Y1. Eight of our targets have estimated masses below the deuterium-burning limit. We analyze the database to identify peculiar objects and/or multiple systems, concluding that this sample includes two very-low-surface-gravity objects and five intermediate-surface-gravity objects. In addition, spectral indices designed to search for composite-atmosphere brown dwarfs indicate that eight objects in our sample are strong candidates to have such atmospheres. None of these objects are overluminous, so their composite atmospheres are unlikely to be companion-induced artifacts. Five of the eight confirmed candidates have been reported as photometrically variable, suggesting that composite atmospheric indices are useful in identifying brown dwarfs with strongly heterogeneous cloud covers. We compare hot Jupiters and brown dwarfs in a near-infrared color-magnitude diagram. We confirm that the coldest hot Jupiters in our sample have spectra similar to mid-L dwarfs, and the hottest hot Jupiters have spectra similar to those of M-dwarfs. Our sample provides a uniform data set of a broad range of ultracool atmospheres, allowing large-scale comparative studies and providing an HST legacy spectral library.
- ID:
- ivo://CDS.VizieR/J/A+A/650/A156
- Title:
- Cluster formation toward Be87/ON2. I.
- Short Name:
- J/A+A/650/A156
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Disentangling line-of-sight alignments of young stellar populations is crucial for observational studies of star-forming complexes. This task is particularly problematic in a Cygnus-X subregion where several components, located at different distances, overlap: the Berkeley 87 young massive cluster, the poorly known [DB2001] Cl05 embedded cluster, and the ON2 star-forming complex, which in turn is composed of several HII regions. We provide a methodology for building an exhaustive census of young objects that can consistently treat large differences in extinction and distance. OMEGA2000 near-infrared observations of the Berkeley 87 / ON2 field were merged with archival data from Gaia, Chandra, Spitzer, and Herschel, and with cross-identifications from the literature. To address the incompleteness effects and selection biases that arise from the line-of-sight overlap, we adapted existing methods for extinction estimation and young object classification. We also defined the intrinsic reddening index, R_int_, a new tool for separating intrinsically red sources from those whose infrared color excess is caused by extinction. Finally, we introduce a new method for finding young stellar objects based on R_int_. We find 571 objects whose classification is related to recent or ongoing star formation. Together with other point sources with individual estimates of distance or extinction, we compile a catalog of 3005 objects to be used for further membership work. A new distance for Berkeley 87, (1673+/-17)pc, is estimated as a median of 13 spectroscopic members with accurate Gaia EDR3 parallaxes. The flexibility of our approach, especially regarding the R_int_ definition, allows overcoming photometric biases caused by large variations in extinction and distance, in order to obtain homogeneous catalogs of young sources. The multiwavelength census that results from applying our methods to the Berkeley 87 / ON2 field will serve as a basis for disentangling the overlapped populations.
47. Clusterix 2.0
- ID:
- ivo://CDS.VizieR/J/MNRAS/492/5811
- Title:
- Clusterix 2.0
- Short Name:
- J/MNRAS/492/5811
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Clusterix 2.0 is a web-based, Virtual Observatory compliant, interactive tool for the determination of membership probabilities in stellar clusters based on proper-motion data using a fully non-parametric method. In an area occupied by a cluster, the frequency function is made up of two contributions: cluster and field stars. The tool performs an empirical determination of the frequency functions from the vector point diagram without relying on any previous assumption about their profiles. Clusterix 2.0 allows us to search the appropriate spatial areas in an interactive way until an optimal separation of the two populations is obtained. Several parameters can be adjusted to make the calculation computationally feasible without interfering with the quality of the results. The system offers the possibility to query different catalogues, such as Gaia, or upload a user's own data. The results of the membership determination can be sent via Simple Application Messaging Protocol (SAMP) to Virtual Observatory (VO) tools such as Tool for OPerations on Catalogues And Tables (TOPCAT). We apply Clusterix 2.0 to several open clusters with different properties and environments to show the capabilities of the tool: an area of five degrees radius around NGC 2682 (M67), an old, well-known cluster; a young cluster NGC 2516 with a striking elongated structure extended up to four degrees; NGC 1750 and NGC 1758, a pair of partly overlapping clusters; the area of NGC 1817, where we confirm a little-known cluster, Juchert 23; and an area with many clusters, where we disentangle two overlapping clusters situated where only one was previously known: Ruprecht 26 and the new Clusterix 1.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/12
- Title:
- Coma Ber and a Neighbor Stellar Group tidal tails
- Short Name:
- J/ApJ/877/12
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of tidal structures around the intermediate-aged (~700-800Myr), nearby (~85pc) star cluster Coma Berenices. The spatial and kinematic grouping of stars is determined with the Gaia DR2 parallax and proper motion data, by a clustering analysis tool, StarGO, to map 5D parameters (X, Y, Z, {mu}_{alpha}*cos{delta}, {mu}_{delta}_) onto a 2D neural network. A leading and a trailing tails, each with an extension of ~50pc are revealed for the first time around this disrupting star cluster. The cluster members, totaling to ~115^+5^_-3_M_{sun}_, are clearly mass segregated, and exhibit a flat mass function with {alpha}~0.79+/-0.16, in the sense of dN/dm{prop.to}m^-{alpha}^, where N is the number of member stars and m is stellar mass, in the mass range of m=0.25-2.51M_{sun}_. Within the tidal radius of ~6.9pc, there are 77 member candidates with an average position, i.e., as the cluster center, of RA=186.8110{deg}, and DE=25.8112{deg}, and an average distance of 85.8pc. Additional 120 member candidates reside in the tidal structures, i.e., outnumbering those in the cluster core. The expansion of escaping members lead to an anisotropy in the velocity field of the tidal tails. Our analysis also serendipitously uncovers an adjacent stellar group, part of which has been cataloged in the literature. We identify 218 member candidates, 10 times more than previously known. This star group is some 65pc away from, and ~400Myr younger than, Coma Ber, but is already at the final stage of disruption.
- ID:
- ivo://CDS.VizieR/J/AJ/136/2483
- Title:
- Comoving group associated with HD 141569
- Short Name:
- J/AJ/136/2483
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a search for a young stellar moving group associated with the star HD 141569 - a nearby, isolated Herbig AeBe primary member of a 5+/-3Myr-old triple star system on the outskirts of the Sco-Cen complex. Our spectroscopic survey identified a population of 21 Li-rich, >~30Myr-old stars within 30{deg} of HD 141569 which possess similar proper motions with the star. The spatial distribution of these Li-rich stars, however, is not suggestive of a moving group associated with the HD 141569 triplet, but rather this sample appears cospatial with Upper Scorpius (US) and Upper Centaurus Lupus (UCL). We apply a modified moving cluster parallax method to compare the kinematics of these youthful stars with those of the US and UCL. Eight new potential members of US and five new potential members of UCL are identified. A substantial moving group with an identifiable nucleus within 15{deg} (~30pc) of HD 141569 is not found in this sample. Evidently, the HD 141569 system formed ~5Myr ago in relative isolation, tens of parsecs away from the recent sites of star formation in the Ophiucus-Scorpius-Centaurus region.
- ID:
- ivo://CDS.VizieR/J/A+A/450/681
- Title:
- Companions to close spectroscopic binaries
- Short Name:
- J/A+A/450/681
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have surveyed a sample of 165 solar-type spectroscopic binaries (SB) with periods from 1 to 30 days for higher-order multiplicity. 62 targets have been observed with the NACO adaptive optics system and 13 new physical tertiary companions were detected. Another 12 new wide companions (5 still tentative) were retrieved from the 2MASS (<II/246>) sky survey. Our binaries belong to 161 stellar systems; of these 64 are triple, 11 quadruple and 7 quintuple. After correction for incomplete detection, the fraction of SBs with additional companions is 63+/-5%. We find that this fraction is a strong function of the SB period P, reaching 96% for P<3d and dropping to 36% for P>12d. Period distributions of SBs with and without tertiaries are significantly different, but their mass ratio distributions are identical. New statistical data on the multiplicity of close SBs indicate that their periods and mass ratios were established very early, but periods of SBs within triples were further shortened by angular momentum exchange with companions.