- ID:
- ivo://CDS.VizieR/J/ApJ/571/512
- Title:
- Distances of white dwarf stars
- Short Name:
- J/ApJ/571/512
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The most recent version of the Catalog of Spectroscopically Identified White Dwarfs lists 2249 white dwarf stars. Among these stars are 109 white dwarfs that have either reliable trigonometric parallaxes or color-based distance moduli that place them at a distance within 20pc of the Sun. Most of these nearby white dwarfs are isolated stars, but 28 (25% of the sample) are in binary systems, including such well-known systems as Sirius A/B and Procyon A/B. There are also three double degenerate systems in this sample of the local white dwarf population. The sample of local white dwarfs is largely complete out to 13pc, and the local density of white dwarf stars is found to be 5.0+/-0.7x10^-3^pc^-3^, with a corresponding mass density of 3.4+/-0.5x10^-3^M{sun}_/pc^3^
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/157/78
- Title:
- Double & multiple star systems from GaiaDR2
- Short Name:
- J/AJ/157/78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Binary and multiple stars have long provided an effective empirical method of testing stellar formation and evolution theories. In particular, the existence of wide binary systems (separations >20000 au) is particularly challenging to binary formation models as their physical separations are beyond the typical size of a collapsing cloud core (~5000-10000 au). We mined the recently published Gaia-DR2 catalog (Cat. I/345) to identify bright comoving systems in the five-dimensional space (sky position, parallax, and proper motion). We identified 3741 comoving binary and multiple stellar candidate systems, out of which 575 have compatible radial velocities for all the members of the system. The candidate systems have separations between ~400 and 500000 au. We used the analysis tools of the Virtual Observatory to characterize the comoving system members and to assess their reliability. The comparison with previous comoving systems catalogs obtained from TGAS showed that these catalogs contain a large number of false systems. In addition, we were not able to confirm the ultra-wide binary population presented in these catalogs. The robustness of our methodology is demonstrated by the identification of well known comoving star clusters and by the low contamination rate for comoving binary systems with projected physical separations <50000 au. These last constitute a reliable sample for further studies. The catalog is available online at the Spanish Virtual Observatory portal (http://svo2.cab.inta-csic.es/vocats/v2/comovingGaiaDR2/).
- ID:
- ivo://CDS.VizieR/J/A+A/619/A106
- Title:
- 3D shape of Orion A from Gaia DR2
- Short Name:
- J/A+A/619/A106
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use the Gaia DR2 distances of about 700 mid-infrared selected young stellar objects in the benchmark giant molecular cloud Orion A to infer its 3D shape and orientation. We find that Orion A is not the fairly straight filamentary cloud that we see in (2D) projection, but instead a cometary-like cloud oriented toward the Galactic plane, with two distinct components: a denser and enhanced star-forming (bent) Head, and a lower density and star-formation quieter ~75pc long Tail. The true extent of Orion A is not the projected ~40pc but ~90pc, making it by far the largest molecular cloud in the local neighborhood. Its aspect ratio (~30:1) and high column-density fraction (~45%) make it similar to large-scale Milky Way filaments ("bones"), despite its distance to the galactic mid-plane being an order of magnitude larger than typically found for these structures.
- ID:
- ivo://CDS.VizieR/J/A+A/638/A85
- Title:
- 3D view of Taurus with Gaia and Herschel
- Short Name:
- J/A+A/638/A85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Taurus represents an ideal region to study the three-dimensional distribution of the young stellar population and relate it to the associated molecular cloud. The second Gaia data release (DR2) enables us to investigate the Taurus complex in three dimensions, starting from a previously defined robust membership. The molecular cloud structured in filaments can be traced in emission using the public far-infrared maps from Herschel. From a compiled catalog of spectroscopically confirmed members, we analyze the 283 sources with reliable parallax and proper motions in the Gaia DR2 archive. We fit the distribution of parallaxes and proper motions with multiple populations described by multivariate Gaussians. We compute the cartesian Galactic coordinates (X,Y,Z) and, for the populations associated with the main cloud, also the galactic space velocity (U,V,W). We discuss the spatial distribution of the populations in relation to the structure of the filamentary molecular cloud traced by Herschel. We discover the presence of six populations which are all well defined in parallax and proper motions, with the only exception being Taurus D. The derived distances range between ~130 and ~160pc. We do not find a unique relation between stellar population and the associated molecular cloud: while the stellar population seems to be on the cloud surface, both lying at similar distances, this is not the case when the molecular cloud is structured in filaments. Taurus B is probably moving in the direction of Taurus A, while Taurus E appears to be moving towards them. The Taurus region is the result of a complex star formation history which most probably occurred in clumpy and filamentary structures that are evolving independently.
- ID:
- ivo://CDS.VizieR/J/PAZh/34/446
- Title:
- Dynamical study of wide pairs of stars from WDS
- Short Name:
- J/PAZh/34/446
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using the method of apparent motion parameters, we have studied the relative motion of the components in 561 pairs of wide (rho>2") and relatively nearby (Hipparcos parallaxes >0.01") visual double stars based on data from the WDS catalog. The minimum masses of the double stars have been calculated at given parallaxes. We have identified 358 optical pairs. For 11 stellar pairs, we have found the minimum mass to exceed the estimate corresponding to their spectral types and luminosities. This excess is 5-7M_{sun}_ for two stars, ADS7446 and 9701.
- ID:
- ivo://CDS.VizieR/J/MNRAS/453/2220
- Title:
- Early-type Sco-Cen members with literature RVs
- Short Name:
- J/MNRAS/453/2220
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the serendipitous discovery of several young mid-M stars found during a search for new members of the 30-40Myr-old Octans Association. Only one of the stars may be considered a possible Octans(-Near) member. However, two stars have proper motions, kinematic distances, radial velocities, photometry and LII {lambda}6708 measurements consistent with membership in the 8-10Myr-old TW Hydrae Association. Another may be an outlying member of TW Hydrae but has a velocity similar to that predicted by membership in Octans. We also identify two new lithium-rich members of the neighbouring Scorpius-Centaurus OB Association (Sco-Cen). Both exhibit large 12 and 22{mu}m excesses and strong, variable H{alpha} emission which we attribute to accretion from circumstellar discs. Such stars are thought to be incredibly rare at the ~16Myr median age of Sco-Cen and they join only one other confirmed M-type and three higher mass accretors outside of Upper Scorpius. The serendipitous discovery of two accreting stars hosting large quantities of circumstellar material may be indicative of a sizeable age spread in Sco-Cen, or further evidence that disc dispersal and planet formation time-scales are longer around lower mass stars. To aid future studies of Sco-Cen, we also provide a newly compiled catalogue of 305 early-type Hipparcos members with spectroscopic radial velocities sourced from the literature.
- ID:
- ivo://CDS.VizieR/J/ApJ/831/L6
- Title:
- Eclipsing binary parallaxes with Gaia data
- Short Name:
- J/ApJ/831/L6
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We test the parallaxes reported in the Gaia first data release using the sample of eclipsing binaries with accurate, empirical distances from Stassun & Torres (2016, arXiv:1609.02579). We find an average offset of -0.25+/-0.05mas in the sense of the Gaia parallaxes being too small (i.e., the distances too long). The offset does not depend strongly on obvious parameters such as color or brightness. However, we find with high confidence that the offset may depend on ecliptic latitude: the mean offset is -0.38+/-0.06mas in the ecliptic north and -0.05+/-0.09mas in the ecliptic south. The ecliptic latitude dependence may also be represented by the linear relation, {Delta}{pi}~-0.22(+/-0.05)-0.003(+/-0.001)x{beta}mas ({beta} in degrees). Finally, there is a possible dependence of the parallax offset on distance, with the offset becoming negligible for {pi}<~1mas; we discuss whether this could be caused by a systematic error in the eclipsing binary distance scale, and reject this interpretation as unlikely.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A80
- Title:
- EREBOS project. I.
- Short Name:
- J/A+A/630/A80
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Eclipsing post-common-envelope binaries are highly important for resolving the poorly understood, very short-lived common-envelope phase of stellar evolution. Most hot subdwarfs (sdO/Bs) are the bare helium-burning cores of red giants that have lost almost all of their hydrogen envelope. This mass loss is often triggered by common-envelope interactions with close stellar or even substellar companions. Cool companions to hot subdwarf stars such as late-type stars and brown dwarfs are detectable from characteristic light-curve variations - reflection effects and often eclipses. In the recently published catalog of eclipsing binaries in the Galactic Bulge and in the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey, we discovered 125 new eclipsing systems showing a reflection effect seen by visual inspection of the light curves and using a machine-learning algorithm, in addition to the 36 systems previously discovered by the Optical Gravitational Lesing Experiment (OGLE) team. The Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project aims at analyzing all newly discovered eclipsing binaries of the HW Vir type (hot subdwarf + close, cool companion) based on a spectroscopic and photometric follow up to derive the mass distribution of the companions, constrain the fraction of substellar companions, and determine the minimum mass needed to strip off the red-giant envelope. To constrain the nature of the primary we derived the absolute magnitude and the reduced proper motion of all our targets with the help of the parallaxes and proper motions measured by the Gaia mission and compared those to the Gaia white-dwarf candidate catalog. It was possible to derive the nature of a subset of our targets, for which observed spectra are available, by measuring the atmospheric parameter of the primary, confirming that less than 10% of our systems are not sdO/Bs with cool companions but are white dwarfs or central stars of planetary nebula. This large sample of eclipsing hot subdwarfs with cool companions allowed us to derive a significant period distribution for hot subdwarfs with cool companions for the first time showing that the period distribution is much broader than previously thought and is ideally suited to finding the lowest-mass companions to hot subdwarf stars. The comparison with related binary populations shows that the period distribution of HW Vir systems is very similar to WD+dM systems and central stars of planetary nebula with cool companions. In the future, several new photometric surveys will be carried out, which will further increase the sample of this project, providing the potential to test many aspects of common-envelope theory and binary evolution.
- ID:
- ivo://CDS.VizieR/J/A+A/624/A8
- Title:
- Evolved Galactic open clusters dynamical properties
- Short Name:
- J/A+A/624/A8
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The stellar content of Galactic open clusters (OCs) is gradually depleted during their evolution as a result of internal relaxation and external interactions. The final residues of the long-term evolution of OCs are called open cluster remnants (OCRs).These are sparsely populated structures that can barely be distinguished from the field. We aimed to characterise and compare the dynamical states of a set of 16 objects catalogued as OCRs or OCR candidates. The sample also includes 7 objects that are catalogued as dynamically evolved OCs for comparison purposes. We used photometric data from the 2MASS catalogue, proper motions and parallaxes from the GAIA DR2 catalogue, and a decontamination algorithm that was applied to the three-dimensional astrometric space of proper motions and parallaxes ({mu}_{alpha}, {mu}_{delta}, {varpi}) for stars in the objects' areas. The investigated OCRs present masses (M) and velocity dispersions ({sigma}_v_) within well-defined ranges: M between ~10-40M_{sun} and {sigma}_v_ between ~1-7km/s. Some objects in the remnant sample have a limiting radius R_lim_<~2pc, which means that they are more compact than the investigated OCs; other remnants have R_lim_ between ~2-7pc, which is comparable to the OCs. In general, our clusters show signals of depletion of low-mass stars. This confirms their dynamically evolved states. Using results from N-body simulations, we conclude that the OCRs we studied are in fact remnants of initially very populous OCs (N_0_~10^3^-10^4^stars). The outcome of the long-term evolution is to bring the final residues of the OCs to dynamical states that are similar to each other, thus masking out the memory of the initial formation conditions of star clusters.
- ID:
- ivo://CDS.VizieR/J/MNRAS/498/5720
- Title:
- Extended Breakthrough Listen sample
- Short Name:
- J/MNRAS/498/5720
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We extend the source sample recently observed by the Breakthrough Listen Initiative by including additional stars (with parallaxes measured by Gaia) that also reside within the FWHM of the GBT and Parkes radio telescope target fields. These stars have estimated distances as listed in the extensions of the Gaia DR2 catalogue. Enlarging the sample from 1327 to 288315 stellar objects permits us to achieve substantially better Continuous Waveform Transmitter Rate Figures of Merit (CWTFM) than any previous analysis, and allows us to place the tightest limits yet on the prevalence of nearby high-duty-cycle extraterrestrial transmitters. The results suggest <~0.0660(+0.0004,-0.0003)% of stellar systems within 50 pc host such transmitters (assuming an EIRP>~10^13^W) and <~0.039(+0.004,-0.008)% within 200pc (assuming an EIRP>~2.5*10^14^W). We further extend our analysis to much greater distances, though we caution that the detection of narrow-band signals beyond a few hundred pc may be affected by interstellar scintillation. The extended sample also permits us to place new constraints on the prevalence of extraterrestrial transmitters by stellar type and spectral class. Our results suggest targeted analyses of SETI radio data can benefit from taking into account the fact that in addition to the target at the field centre, many other cosmic objects reside within the primary beam response of a parabolic radio telescope. These include foreground and background galactic stars, but also extragalactic systems. With distances measured by Gaia, these additional sources can be used to place improved limits on the prevalence of extraterrestrial transmitters, and extend the analysis to a wide range of cosmic objects.