- ID:
- ivo://CDS.VizieR/J/ApJS/226/18
- Title:
- 5yr radial velocity measurements of 19 Cepheids
- Short Name:
- J/ApJS/226/18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the radial velocity (RV) variability and spectroscopic binarity of 19 Galactic long-period (P_puls_>~10d) classical Cepheid variable stars whose trigonometric parallaxes are being measured using the Hubble Space Telescope and Gaia. Our primary objective is to constrain possible parallax error due to undetected orbital motion. Using over 1600 high-precision RVs measured between 2011 and 2016, we find no indication of orbital motion on <~5yr timescales for 18 Cepheids and determine upper limits on allowed configurations for a range of input orbital periods. The results constrain the unsigned parallax error due to orbital motion to <2% for 16 stars, and <4% for 18. We improve the orbital solution of the known binary YZ Carinae and show that the astrometric model must take into account orbital motion to avoid significant error (~+/-100{mu}arcsec). We further investigate long-timescale (P_orb_>10yr) variations in pulsation-averaged velocity v_{gamma}_ via a template fitting approach using both new and literature RVs. We discover the spectroscopic binarity of XZ Car and CD Cyg, find first tentative evidence for AQ Car, and reveal KN Cen's orbital signature. Further (mostly tentative) evidence of time-variable v_{gamma}_ is found for SS CMa, VY Car, SZ Cyg, and X Pup. We briefly discuss considerations regarding a vetting process of Galactic Leavitt law calibrators and show that light contributions by companions are insignificant for most distance scale applications.
« Previous |
1,161 - 1,168 of 1,168
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/830/10
- Title:
- >20yrs of HST obs. of Cepheids in SNIa host gal.
- Short Name:
- J/ApJ/830/10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present results of an optical search conducted as part of the SH0ES project (Supernovae and H_0_ for the Equation of State of dark energy) for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC4258. The targets include nine newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SNIa hosts, which yielded a total of 2200 variables with well-defined selection criteria, the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H_0_ with a total uncertainty of 2.4%.
- ID:
- ivo://CDS.VizieR/J/AJ/150/145
- Title:
- YSOVAR infrared photometry in GGD12-15
- Short Name:
- J/AJ/150/145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an IR-monitoring survey with the Spitzer Space Telescope of the star-forming region GGD 12-15. More than 1000 objects were monitored, including about 350 objects within the central 5', which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability project. The region was also the subject of a contemporaneous 67 ks Chandra observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5' are young stellar objects (YSOs) based on a combination of their spectral energy distribution, IR variability, and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-infrared (mid-IR) variability. There are 39 periodic sources, and all but one is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded YSOs. Most of the Class I/II objects exhibit redder colors in a fainter state, which is compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR light curves. However, we find that X-ray detected Class II sources have longer timescales for change in the MIR than a similar set of non-X-ray detected Class IIs.
- ID:
- ivo://CDS.VizieR/J/AJ/150/118
- Title:
- YSOVAR infrared photometry in IRAS 20050+2720
- Short Name:
- J/AJ/150/118
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5{mu}m with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2-6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color-magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.
- ID:
- ivo://CDS.VizieR/J/AJ/148/122
- Title:
- YSOVAR: infrared photometry in Lynds 1688
- Short Name:
- J/AJ/148/122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The emission from young stellar objects (YSOs) in the mid-infrared (mid-IR) is dominated by the inner rim of their circumstellar disks. We present IR data from the Young Stellar Object VARiability (YSOVAR) survey of ~800 objects in the direction of the Lynds 1688 (L1688) star-forming region over four visibility windows spanning 1.6yr using the Spitzer Space Telescope in its warm mission phase. Among all light curves, 57 sources are cluster members identified based on their spectral energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the light curves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6yr. Nonperiodic light curves often still show a preferred timescale of variability that is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption toward the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.
- ID:
- ivo://CDS.VizieR/J/AJ/150/175
- Title:
- YSOVAR: infrared photometry in NGC 1333
- Short Name:
- J/AJ/150/175
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As part of the Young Stellar Object VARiability (YSOVAR) program, we monitored NGC 1333 for ~35 days at 3.6 and 4.5{mu}m using the Spitzer Space Telescope. We report here on the mid-infrared variability of the point sources in the ~10'x~20' area centered on 03:29:06, +31:19:30 (J2000). Out of 701 light curves in either channel, we find 78 variables over the YSOVAR campaign. About half of the members are variable. The variable fraction for the most embedded spectral energy distributions (SEDs) (Class I, flat) is higher than that for less embedded SEDs (Class II), which is in turn higher than the star-like SEDs (Class III). A few objects have amplitudes (10-90th percentile brightness) in [3.6] or [4.5]>0.2mag; a more typical amplitude is 0.1-0.15mag. The largest color change is >0.2mag. There are 24 periodic objects, with 40% of them being flat SED class. This may mean that the periodic signal is primarily from the disk, not the photosphere, in those cases. We find 9 variables likely to be "dippers", where texture in the disk occults the central star, and 11 likely to be "bursters", where accretion instabilities create brightness bursts. There are 39 objects that have significant trends in [3.6]-[4.5] color over the campaign, about evenly divided between redder-when-fainter (consistent with extinction variations) and bluer-when-fainter. About a third of the 17 Class 0 and/or jet-driving sources from the literature are variable over the YSOVAR campaign, and a larger fraction (~half) are variable between the YSOVAR campaign and the cryogenic-era Spitzer observations (6-7 years), perhaps because it takes time for the envelope to respond to changes in the central source. The NGC 1333 brown dwarfs do not stand out from the stellar light curves in any way except there is a much larger fraction of periodic objects (~60% of variable brown dwarfs are periodic, compared to ~30% of the variables overall).
- ID:
- ivo://CDS.VizieR/J/AJ/162/63
- Title:
- ZTF light curve of 51 stars in 12 globular clusters
- Short Name:
- J/AJ/162/63
- Date:
- 21 Mar 2022 11:55:52
- Publisher:
- CDS
- Description:
- In this work, we aimed to derive the gri-band period-luminosity (PL) and period-luminosity-color (PLC) relations for late-type contact binaries, for the first time, located in globular clusters, using the homogeneous light curves collected by the Zwicky Transient Factory (ZTF). We started with 79 contact binaries in 15 globular clusters, and retained 30 contact binaries in 10 globular clusters that have adequate numbers of data points in the ZTF light curves and are unaffected by blending. Magnitudes at mean and maximum light of these contact binaries were determined using a fourth-order Fourier expansion, while extinction corrections were done using the Bayerstar2019 3D reddening map together with adopting the homogeneous distances to their host globular clusters. After removing early-type and "anomaly" contact binaries, our derived gri-band PL and period-Wesenheit (PW) relations exhibited a much larger dispersion with large errors on the fitted coefficients. Nevertheless, the gr-band PL and PW relations based on this small sample of contact binaries in globular clusters were consistent with those based on a larger sample of nearby contact binaries. Good agreements of the PL and PW relations suggested both samples of contact binaries in the local Solar neighborhood and in the distant globular clusters can be combined and used to derive and calibrate the PL, PW, and PLC relations. The final derived gr-band PL, PW, and PLC relations were much improved over those based on the limited sample of contact binaries in the globular clusters.
- ID:
- ivo://CDS.VizieR/J/AJ/160/252
- Title:
- ZZ Ceti white dwarfs and candidates in Gaia survey
- Short Name:
- J/AJ/160/252
- Date:
- 09 Mar 2022 22:00:00
- Publisher:
- CDS
- Description:
- The Gaia satellite recently released parallax measurements for ~260000 high-confidence white dwarf candidates, allowing for precise measurements of their physical parameters. By combining these parallaxes with Pan-STARRS and u-band photometry, we measured the effective temperature and stellar mass for all white dwarfs in the Northern Hemisphere within 100pc of the Sun, and identified a sample of ZZ-Ceti white dwarf candidates within the so-called instability strip. We acquired high-speed photometric observations for 90 candidates using the PESTO camera attached to the 1.6m telescope at the Mont-Megantic Observatory. We report the discovery of 38 new ZZ-Ceti stars, including two very rare ultramassive pulsators. We also identified five possibly variable stars within the strip, in addition to 47 objects that do not appear to show any photometric variability. However, several of those could be variable with an amplitude below our detection threshold, or could be located outside the instability strip due to errors in their photometric parameters. In the light of our results, we explore the trends of the dominant period and amplitude in the M--Teff plane, and briefly discuss the question of the purity of the ZZ-Ceti instability strip (i.e., a region devoid of non-variable stars).