- ID:
- ivo://CDS.VizieR/J/ApJ/881/104
- Title:
- Spectroscopic obs. of RR Lyrae in NGC5139
- Short Name:
- J/ApJ/881/104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a detailed spectroscopic analysis of RR Lyrae (RRL) variables in the globular cluster NGC5139 ({omega} Cen). We collected optical (4580-5330{AA}), high-resolution (R~34000), high signal-to-noise ratio (~200) spectra for 113 RRLs with the multifiber spectrograph M2FS at the Magellan/Clay Telescope at Las Campanas Observatory. We also analyzed high- resolution (R~26000) spectra for 122 RRLs collected with FLAMES/GIRAFFE at the Very Large Telescope, available in the ESO archive. The current sample doubles the literature abundances of cluster and field RRLs in the Milky Way based on high-resolution spectra. Equivalent-width measurements were used to estimate atmospheric parameters, iron, and abundance ratios for {alpha} (Mg, Ca, Ti), iron peak (Sc, Cr, Ni, Zn), and s-process (Y) elements. We confirm that {omega}Cen is a complex cluster, characterized by a large spread in the iron content: -2.58<~[Fe/H]<~-0.85. We estimated the average cluster abundance as <[Fe/H]>=-1.80{+/-}0.03, with {sigma}=0.33dex. Our findings also suggest that two different RRL populations coexist in the cluster. The former is more metal-poor ([Fe/H]<~-1.5), with almost solar abundance of Y. The latter is less numerous, more metal-rich, and yttrium enhanced ([Y/Fe]>~0.4). This peculiar bimodal enrichment only shows up in the s-process element, and it is not observed among lighter elements, whose [X/Fe] ratios are typical for Galactic globular clusters.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/136/1645
- Title:
- Spectroscopy of bright QUEST RR Lyrae stars
- Short Name:
- J/AJ/136/1645
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a sample of 43 bright (V<16.1, distance <13kpc) RR Lyrae stars (RRLs) from the QUasar Equatorial Survey with spectroscopic radial velocities and metallicities, we find that several separate halo substructures contribute to the Virgo overdensity (VOD). While there is little evidence of a halo substructure in the spatial distribution of these stars, their distribution in radial velocity reveals two moving groups. These results are reinforced when the sample is combined with a sample of blue horizontal branch stars that were identified in the Sloan Digital Sky Survey, and the combined sample provides evidence for one additional moving group.
- ID:
- ivo://CDS.VizieR/J/AJ/142/136
- Title:
- Spectroscopy of Cepheids. l=30-250{deg}
- Short Name:
- J/AJ/142/136
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper reports on the spectroscopic investigation of 238 Cepheids in the northern sky. Of these stars, about 150 are new to the study of the galactic abundance gradient. These new Cepheids bring the total number of Cepheids involved in abundance distribution studies to over 400. In this work, we also consider systematics between various studies and also those which result from the choice of models.
- ID:
- ivo://CDS.VizieR/J/AJ/151/26
- Title:
- Spectroscopy of five {gamma} Dor variables
- Short Name:
- J/AJ/151/26
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have determined the spectroscopic orbits of five {gamma} Dor variables, HD776, HD6568, HD17310, HD19684, and HD62196. Their orbital periods range from 27.8 to 1163days and their eccentricities from 0.01 to 0.65. Of the five systems, only HD19684 shows lines of its binary companion, but those lines are always so weak and blended with the lines of the primary that we were unable to measure them satisfactorily. The velocity residuals of the orbital fits were searched for periodicities associated with pulsation. No clear, convincing case for velocity periodicities in the residuals was found in four of the five stars. However, for HD17310 we identified a period of 2.13434days, a value in agreement with the largest amplitude period previously found photometrically for that star. The velocity residuals of HD62196 have a long-term trend suggesting that it is a triple system.
- ID:
- ivo://CDS.VizieR/J/AJ/144/88
- Title:
- Spectroscopy of 6 LMC RR Lyrae and 3 SMC RR Lyrae
- Short Name:
- J/AJ/144/88
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5m Magellan telescopes, we obtain medium resolution (R~2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]_spec_=-2.7dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]_phot_<-2.8dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [{alpha}/Fe] ratio, we obtain an overabundance of 0.36dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/110
- Title:
- SPIRITS catalog of IR long period variables
- Short Name:
- J/ApJ/877/110
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a catalog of 417 luminous infrared variable stars with periods exceeding 250 days. These were identified in 20 nearby galaxies by the ongoing SPitzer InfraRed Intensive Transients Survey survey with the Spitzer Space Telescope. Of these, 359 variables have M_[4.5]_ (phase-weighted mean magnitudes) fainter than -12 and periods and luminosities consistent with previously reported variables in the Large Magellanic Cloud (LMC). However, 58 variables are more luminous than M_[4.5]_=-12, including 11 that are brighter than M_[4.5]_=-13, with the brightest having M_[4.5]_=-15.51. Most of these bright variable sources have quasi-periods longer than 1000 days, including four over 2000 days. We suggest that the fundamental period-luminosity relationship, previously measured for the LMC, extends to much higher luminosities and longer periods in this large galaxy sample. We posit that these variables include massive asymptotic giant branch (AGB) stars (possibly super-AGB stars), red supergiants experiencing exceptionally high mass-loss rates, and interacting binaries. We also present 3.6, 4.5, 5.8, and 8.0{mu}m photometric catalogs for all sources in these 20 galaxies.
- ID:
- ivo://CDS.VizieR/J/ApJ/816/49
- Title:
- Spitzer/IRAC observations of SMC Cepheids
- Short Name:
- J/ApJ/816/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the Small Magellanic Cloud (SMC) to be 18.96+/-0.01_stat_+/-0.03_sys_mag (corresponding to 62+/-0.3kpc), which is 0.48+/-0.01mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid-infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to 20kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.
- ID:
- ivo://CDS.VizieR/J/ApJ/759/146
- Title:
- Spitzer/IRAC photometry for 37 Galactic Cepheids
- Short Name:
- J/ApJ/759/146
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Carnegie Hubble Program (CHP) is designed to calibrate the extragalactic distance scale using data from the post-cryogenic era of the Spitzer Space Telescope. The ultimate goal of the CHP is a systematic improvement in the distance scale leading to a determination of the Hubble constant to within an accuracy of 2%. This paper focuses on the measurement and calibration of the Galactic Cepheid period-luminosity (PL, Leavitt) relation using the warm Spitzer/IRAC 1 and 2 bands at 3.6 and 4.5{mu}m. We present photometric measurements covering the period range 4-70 days for 37 Galactic Cepheids. Data at 24 phase points were collected for each star. Three PL relations of the form M=a(log(P)-1)+b are derived. The method adopted here takes the slope a to be -3.31, as determined from the Spitzer Large Magellanic Cloud (LMC) data of Scowcroft et al. (Cat. J/ApJ/743/76). Using the geometric Hubble Space Telescope guide-star distances to 10 Galactic Cepheids, we find a calibrated 3.6{mu}m PL zero point of -5.80+/-0.03. Together with our value for the LMC zero point, we determine a reddening-corrected distance modulus of 18.48+/-0.04mag to the LMC. The mid-IR period-color diagram and the [3.6]-[4.5] color variation with phase are interpreted in terms of CO absorption at 4.5{mu}m. This situation compromises the use of the 4.5{mu}m data for distance determinations.
- ID:
- ivo://CDS.VizieR/J/ApJ/743/76
- Title:
- Spitzer photometry of LMC Cepheids
- Short Name:
- J/ApJ/743/76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Carnegie Hubble Program is designed to improve the extragalactic distance scale using data from the post-cryogenic era of Spitzer. The ultimate goal is a determination of the Hubble constant to an accuracy of 2%. This paper is the first in a series on the Cepheid population of the Large Magellanic Cloud, and focusses on the period-luminosity (PL) relations (Leavitt laws) that will be used, in conjunction with observations of Milky Way Cepheids, to set the slope and zero point of the Cepheid distance scale in the mid-infrared. To this end, we have obtained uniformly sampled light curves for 85 LMC Cepheids, having periods between 6 and 140 days. PL and period-color relations are presented in the 3.6um and 4.5um bands. We demonstrate that the 3.6um band is a superb distance indicator. The cyclical variation of the [3.6]-[4.5] color has been measured for the first time. We attribute the amplitude and phase of the color curves to the dissociation and recombination of CO molecules in the Cepheid's atmosphere. The CO affects only the 4.5um flux making it a potential metallicity indicator.
- ID:
- ivo://CDS.VizieR/J/AJ/153/96
- Title:
- Standard Galactic field RR Lyrae. I. Photometry
- Short Name:
- J/AJ/153/96
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a multi-wavelength compilation of new and previously published photometry for 55 Galactic field RR Lyrae variables. Individual studies, spanning a time baseline of up to 30 years, are self-consistently phased to produce light curves in 10 photometric bands covering the wavelength range from 0.4 to 4.5 microns. Data smoothing via the GLOESS technique is described and applied to generate high-fidelity light curves, from which mean magnitudes, amplitudes, rise times, and times of minimum and maximum light are derived. 60000 observations were acquired using the new robotic Three-hundred MilliMeter Telescope (TMMT), which was first deployed at the Carnegie Observatories in Pasadena, CA, and is now permanently installed and operating at Las Campanas Observatory in Chile. We provide a full description of the TMMT hardware, software, and data reduction pipeline. Archival photometry contributed approximately 31000 observations. Photometric data are given in the standard Johnson UBV, Kron-Cousins R_C_I_C_, 2MASS JHK, and Spitzer [3.6] and [4.5] bandpasses.