For Hipparcos M, S, and C spectral type stars, we provide calibrated instantaneous (epoch) Cousins V-I color indices using newly derived HpV_T2_ photometry. Three new sets of ground-based Cousins VI data have been obtained for more than 170 carbon and red M giants, observed at SAAO in 1984 and 1987 (table1), at Siding Spring Observatory in 2002 (table2), and with the Automatic Photoelectric Telescopes located at Fairborn Observatory from 1996 (table3). These datasets in combination with the published sources of VI photometry served to obtain the calibration curves linking Hipparcos/Tycho Hp-V_T2_ with the Cousins V-I index. In total, 321 carbon stars and 4464 M- and S-type stars have new V-I indices. The standard error of the mean V-I is about 0.1mag or better down to Hp~9 although it deteriorates rapidly at fainter magnitudes. These V-I indices can be used to verify the published Hipparcos V-I color indices. Thus, we have identified a handful of new cases where, instead of the real target, a random field star has been observed. A considerable fraction of the DMSA/C and DMSA/V solutions for red stars appear not to be warranted. Most likely such spurious solutions may originate from usage of a heavily biased color in the astrometric processing.
A sample consisting of 570 binary systems is compiled from several sources of visual binary stars with well-known orbital elements. High-precision trigonometric parallaxes (mean relative error about 5%) and proper motions (mean relative error about 3%) are extracted from the Hipparcos Catalogue or from the reprocessed Hipparcos data. However, 13% of the sample stars lack radial velocity measurements. Computed galactic velocity components and other kinematic parameters are used to divide the sample stars into kinematic age groups. The majority (89%) of the sample stars, with known radial velocities, are the thin disk stars, 9.5% binaries have thick disk kinematics and only 1.4% are halo stars. 85% of thin disk binaries are young or medium age stars and almost 15% are old thin disk stars. There is an urgent need to increase the number of the identified halo binary stars with known orbits and substantially improve the situation with their radial velocity data. Based on the data from the Hipparcos astrometry satellite (ESA)
This paper continues kinematical investigation of the Hipparcos visual binaries with known orbits. A sample, consisting of 804 binary systems with orbital elements determined from ground-based observations, is selected. The mean relative error of their parallaxes is about 12% and the mean relative error of proper motions is about 4%. However, even 41% of the sample stars lack radial velocity measurements. The computed Galactic velocity components and other kinematical parameters are used to divide the stars with known radial velocities into kinematical age groups. The majority (92%) of binaries from the sample are thin disk stars, 7.6% have thick disk kinematics and only two binaries have halo kinematics. Among them, the long-period variable Mira Ceti has a very discordant Hipparcos and ground-based parallax values. From the whole sample, 60 stars are ascribed to the thick disk and halo population. There is an urgent need to increase the number of the identified halo binaries with known orbits and substantially improve the situation with radial velocity data for stars with known orbits. Based on the data from the Hipparcos astrometry satellite (ESA)
The present catalog supersedes an earlier edition of Nicolet (1978). It is a collection of weighted mean photoelectric values (V, B-V, U-B) for stars measured in the UBV system. The mean values were computed by combining all individual measurements compiled in the catalog of Mermilliod (1987), except those that were clearly found to be erroneous for some reason or another. Some newer observations compiled since 1987 are also included in the means. The procedure for computing the homogeneous means involved the calculation of normal averages weighted by the number of observations in each list (unity when not published). New weights are assigned based on the deviation of each value from the previous mean, then a new weighted mean is computed. This technique is not as rigorous as that used by Nicolet (comparison of each list with the standard system master list), but the latter cannot often be realized effectively in practice, since many lists do not contain enough stars in common with a standard list. Also, there are now so many references (more than 1500) that it is not feasible to analyze each publication with respect to a standard list. This edition of the catalog contains 92964 stars measured since the introduction of the UBV system in 1953. The data included are star identification in the Geneva coded numbering system, double and variable codes, UBV data and their standard deviations, and number of observations. A second file contains the definition of the coded numbering system. The catalog was prepared at the Institut d'Astronomie de l'Universite de Lausanne in Geneva.
In a sample of 150 hot stars in NGC 330, a SMC cluster containing a high fraction of Be stars, we searched for photometric variables using OGLE II data. At least one third of all stars are variable, with 38 being periodic. We found 27 pulsators ({lambda} Eri variables), six eclipsing systems, two bursting sources, and several stars with unusual photometric behavior. Pulsations are present in ~30% of known Be stars, and they are long lived, lasting more than a decade. The strongest pulsators are associated with stars evolved from the main sequence.
Like massive galaxies, dwarf galaxies are expected to undergo major mergers with other dwarfs. However, the end state of these mergers and the role that merging plays in regulating dwarf star formation are uncertain. Using imaging from the Hyper Suprime-Cam Subaru Strategic Program, we construct a sample of dwarf-dwarf mergers and examine the star formation and host properties of the merging systems. These galaxies are selected via an automated detection algorithm from a sample of 6875 spectroscopically selected isolated dwarf galaxies at z<0.12 and log(M_*_/M_{sun}_)<9.6 from the Galaxy and Mass Assembly and Sloan Digital Sky Survey spectroscopic campaigns. We find a total tidal feature detection fraction of 3.29% (6.1% when considering only galaxies at z<0.05). The tidal feature detection fraction rises strongly as a function of star formation activity; 15%-20% of galaxies with extremely high H{alpha} equivalent width (EW_H{alpha}_>250{AA}) show signs of tidal debris. Galaxies that host tidal debris are also systematically bluer than the average galaxy at fixed stellar mass. These findings extend the observed dwarf-dwarf merger sequence with a significant sample of dwarf galaxies, indicating that star formation triggered in mergers between dwarf galaxies continues after coalescence.
We have carried out a systematic search for galaxy-scale strong lenses in multiband imaging from the Hyper Suprime-Cam (HSC) survey. Our automated pipeline, based on realistic strong-lens simulations, deep neural network classification, and visual inspection, is aimed at efficiently selecting systems with wide image separations (Einstein radii ~1.0-3.0"), intermediate redshift lenses (z~0.4-0.7), and bright arcs for galaxy evolution and cosmology. We classified gri images of all 62.5 million galaxies in HSC Wide with i-band Kron radius >0.8" to avoid strict preselections and to prepare for the upcoming era of deep, wide-scale imaging surveys with Euclid and Rubin Observatory. We obtained 206 newly-discovered candidates classified as definite or probable lenses with either spatially-resolved multiple images or extended, distorted arcs. In addition, we found 88 high-quality candidates that were assigned lower confidence in previous HSC searches, and we recovered 173 known systems in the literature. These results demonstrate that, aided by limited human input, deep learning pipelines with false positive rates as low as ~0.01% can be very powerful tools for identifying the rare strong lenses from large catalogs, and can also largely extend the samples found by traditional algorithms. We provide a ranked list of candidates for future spectroscopic confirmation.
We present a photometric catalogue of star cluster candidates in Hickson compact groups (HCGs) 7, 31, 42, 59, and 92, based on observations with the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope. The catalogue contains precise cluster positions (right ascension and declination), magnitudes, and colours in the BVI filters. The number of detected sources ranges from 2200 to 5600 per group, from which we construct the high-confidence sample by applying a number of criteria designed to reduce foreground and background contaminants. Furthermore, the high-confidence cluster candidates for each of the 16 galaxies in our sample are split into two subpopulations: one that may contain young star clusters and one that is dominated by globular older clusters. The ratio of young star cluster to globular cluster candidates varies from group to group, from equal numbers to the extreme of HCG 31 which has a ratio of 8 to 1, due to a recent starburst induced by interactions in the group. We find that the number of blue clusters with M_V_<-9 correlates well with the current star formation rate in an individual galaxy, while the number of globular cluster candidates with M_V_<-7.8 correlates well (though with large scatter) with the stellar mass. Analyses of the high-confidence sample presented in this paper show that star clusters can be successfully used to infer the gross star formation history of the host groups and therefore determine their placement in a proposed evolutionary sequence for compact galaxy groups.
HST obs. in the region of 3 young LMC SNIa remnants
Short Name:
J/ApJ/886/99
Date:
21 Oct 2021
Publisher:
CDS
Description:
We have used two methods to search for surviving companions of Type Ia supernova progenitors in three Balmer-dominated supernova remnants in the Large Magellanic Cloud: 0519-69.0, 0505-67.9 (DEM L71), and 0548-70.4. In the first method, we use the Hubble Space Telescope photometric measurements of stars to construct color-magnitude diagrams (CMDs) and compare positions of stars in the CMDs with those expected from theoretical post-impact evolution of surviving main-sequence or helium star companions. No obvious candidates of surviving companions are identified in this photometric search. Future models for surviving red giant companions or with different explosion mechanisms are needed for thorough comparisons with these observations in order to make more definitive conclusions. In the second method, we use Multi Unit Spectroscopic Explorer observations of 0519-69.0 and DEM L71 to carry out spectroscopic analyses of stars in order to use large peculiar radial velocities as diagnostics of surviving companions. We find a star in 0519-69.0 and a star in DEM L71 moving at radial velocities of 182+/-0km/s and 213+/-0km/s, respectively, more than 2.5{sigma} from the mean radial velocity of the underlying stellar population, 264 and 270km/s, respectively. These stars need higher-quality spectra to investigate their abundances and rotation velocities to determine whether they are indeed surviving companions of the supernova progenitors.
This paper presents a detailed description of the acquisition and processing of a large body of imaging data for three fields in the globular cluster M4 taken with the Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. Analysis with the ALLFRAME package yielded the deepest photometry yet obtained for this cluster. The resulting data set for 4708 stars (positions and calibrated photometry in V, I, and, in two fields, U) spanning approximately six cluster core radii is presented. The scientific analysis is deferred to three companion papers, which investigate the significant white dwarf population discovered and the main-sequence population.