- ID:
- ivo://CDS.VizieR/J/A+A/629/A10
- Title:
- IRAS23033+5951 continuum & line data cubes at 1.3mm
- Short Name:
- J/A+A/629/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation process of high-mass stars (>8M_{sun}_) is poorly constrained, particularly, the effects of clump fragmentation creating multiple systems and the mechanism of mass accretion onto the cores. We study the fragmentation of dense gas clumps, and trace the circumstellar rotation and outflows by analyzing observations of the high-mass (~500M_{sun}_) star-forming region IRAS 23033+5951. Using the Northern Extended Millimeter Array (NOEMA) in three configurations and the IRAM 30-m single-dish telescope at 220GHz, we probe the gas and dust emission at an angular resolution of ~0.45", corresponding to 1900au. In the mm continuum emission, we identify a protostellar cluster with at least four mm-sources, where three of them show a significantly higher peak intensity well above a signal-to-noise ratio of 100. Hierarchical fragmentation from large to small spatial scales is discussed. Two fragments are embedded in rotating structures and drive molecular outflows, traced by ^13^CO (2-1) emission. The velocity profiles across two of the cores are similar to Keplerian but are missing the highest velocity components close to the center of rotation, which is a common phenomena from observations like these, and other rotation scenarios are not excluded entirely. Position-velocity diagrams suggest protostellar masses of ~6 and 19M_{sun}. Rotational temperatures from fitting CH_3_CN (12_K_-11_K_) spectra are used for estimating the gas temperature and by that the disk stability against gravitational fragmentation, utilizing Toomre's Q parameter. Assuming that the candidate disk is in Keplerian rotation about the central stellar object and considering different disk inclination angles, we identify only one candidate disk to be unstable against gravitational instability caused by axisymmetric perturbations. The dominant sources cover different evolutionary stages within the same maternal gas clump. The appearance of rotation and outflows of the cores are similar to those found in low-mass star-forming regions.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/594/A115
- Title:
- IRAS08589-4714 molecular gas
- Short Name:
- J/A+A/594/A115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of the region IRAS 08589-4714 with the aim of characterizing the molecular environment. We observed the ^12^CO(3-2), ^13^CO(3-2), C^18^O(3-2), HCO^+^(3-2), and HCN(3-2) molecular lines in a region of 150"x150", centered on the IRAS source, to analyze the distribution and characteristics of the molecular gas linked to the IRAS source.
- ID:
- ivo://CDS.VizieR/J/ApJ/397/520
- Title:
- IRAS observations in Cr A
- Short Name:
- J/ApJ/397/520
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of IRAS data for a 57pc^2^ area of the nearby Corona Australis dark cloud complex. A total of 79 far-infrared sources are detected at 12{mu}m or in at least three IRAS bands. Combining these data with both newly obtained and previously published optical/infrared data, a total of 16 IRAS sources are identified with young stellar objects which are in close proximity to the R Coronae Australis cloud or Rossano Cloud B. Among these objects is a cold, heavily obscured young stellar object, IRAS 32, which radiates only in the 25-100{mu}m bands and is found to be associated with an extended near-infrared nebula. The majority of the remaining 63 IRAS sources in our sample appear to be related to field stars. A total of 24 young stellar objects are now known to be associated with the Cr A cloud and we investigate their collective properties through analysis of their spectral energy distributions. As observed for embedded populations in other dark clouds, the shapes of the spectral energy distributions constitute a nearly continuous sequence from cold, heavily obscured objects (extreme Class I) to T Tauri stars (Class II), with about equal numbers of Class I and Class II sources. There is a hint of a segregation of the shapes of the spectral energy distributions with source luminosity: eight of nine sources with L>1.8L_{sun}_ display Class I or flat energy distributions. We conclude that star formation in the Cr A cloud has proceeded in a manner similar to that in the rho Ophiuchi cloud in terms of duration and efficiency. We attribute the relatively low number of young stellar objects in Cr A to its lower mass of both low-density and high-density molecular gas. The luminosity function of the Cr A sources is unique only by the presence of six intermediate-luminosity (~100L_{sun}_) objects. Either the cloud has formed intermediate-mass stars more efficiently than lower mass objects relative to other dark clouds or several of these objects are interlopers.
- ID:
- ivo://CDS.VizieR/J/A+A/633/A7
- Title:
- IRAS 16293-2422 spectral cubes
- Short Name:
- J/A+A/633/A7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Temperature is a crucial parameter in circumstellar disk evolution and planet formation because it governs the resistance of the gas to gravitational instability and sets the chemical composition of the planet-forming material. We set out to determine the gas temperature of the young disk-like structure around the Class 0 protostar IRAS 16293-2422A. We used Atacama Large Millimeter/submillimeter Array (ALMA) observations of multiple H_2_CS J=7-6 and J=10-9 lines from the Protostellar Interferometric Line Survey (PILS) to create a temperature map for the inner ~200AU of the disk-like structure. This molecule is a particularly useful temperature probe because transitions between energy levels with different K_a quantum numbers operate only through collisions. Based on the H_2_CS line ratios, the temperature is between ~100-175K in the inner ~150AU, and drops to ~75K at ~200AU. At the current resolution (0.5"~70AU), no jump is seen in the temperature at the disk-envelope interface. The temperature structure derived from H_2_CS is consistent with envelope temperature profiles that constrain the temperature from 1000AU scales down to ~100AU, but does not follow the temperature rise seen in these profiles at smaller radii. Higher angular resolution observations of optically thin temperature tracers are needed to establish whether cooling by gas-phase water, the presence of a putative disk, or the dust optical depth influences the gas temperature at <~100AU scales. The temperature at 100AU is higher in IRAS 16293A than in the embedded Class 0/I disk L1527, consistent with the higher luminosity of the former.
- ID:
- ivo://CDS.VizieR/J/ApJ/897/53
- Title:
- IR dark clouds parameters in molecular clouds
- Short Name:
- J/ApJ/897/53
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- Ever since their discovery, infrared dark clouds (IRDCs) are generally considered to be the sites just at the onset of high-mass (HM) star formation. In recent years, it has been realized that not all IRDCs harbor HM young stellar objects (YSOs). Only those IRDCs satisfying a certain mass-size criterion, or equivalently above a certain threshold density, are found to contain HMYSOs. In all cases, IRDCs provide ideal conditions for the formation of stellar clusters. In this paper, we study the massive stellar content of IRDCs to readdress the relation between IRDCs and HM star formation. For this purpose, we have identified all IRDCs associated with a sample of 12 Galactic molecular clouds (MCs). The selected MCs have been the target of a systematic search for YSOs in an earlier study. The cataloged positions of YSOs have been used to search all YSOs embedded in each identified IRDC. In total, we have found 834 YSOs in 128 IRDCs. The sample of IRDCs have mean surface densities of 319M{odot}/pc^2^, mean mass of 1062M{odot}, and a mass function power-law slope -1.8, which are similar to the corresponding properties for the full sample of IRDCs and resulting physical properties in previous studies. We find that all those IRDCs containing at least one intermediate to HM young star satisfy the often-used mass-size criterion for forming HM stars. However, not all IRDCs satisfying the mass-size criterion contain HM stars. We find that the often-used mass-size criterion corresponds to 35% probability of an IRDC forming a massive star. Twenty-five (20%) of the IRDCs are potential sites of stellar clusters of mass more than 100M{odot}.
- ID:
- ivo://CDS.VizieR/J/ApJ/694/546
- Title:
- IR dust bubbles. II. YSOs model parameters
- Short Name:
- J/ApJ/694/546
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of late-O/early-B-powered, parsec-sized bubbles and associated star formation using Two Micron All Sky Survey, GLIMPSE, MIPSGAL, and MAGPIS surveys. Three bubbles were selected from the Churchwell et al. catalog (2007, Cat. J/ApJ/670/428). We confirm that the structure identified in Watson et al. (2008ApJ...681.1341W) holds in less energetic bubbles, i.e., a photodissociated region, identified by 8um emission due to polycyclic aromatic hydrocarbons surrounding hot dust, identified by 24um emission and ionized gas, and identified by 20cm continuum. We estimate the dynamical age of two bubbles by comparing bubble sizes to numerical models of Hosokawa and Inutsuka. We also identify and analyze candidate young stellar objects using spectral energy distribution (SED) fitting and identify sites of possible triggered star formation. Lastly, we identify likely ionizing sources for two sources based on SED fitting.
- ID:
- ivo://CDS.VizieR/J/ApJ/752/127
- Title:
- IR observations of AFGL 490
- Short Name:
- J/ApJ/752/127
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Spitzer IRAC and MIPS observations of the star-forming region containing intermediate-mass young stellar object (YSO) AFGL 490. We supplement these data with near-IR Two Micron All Sky Survey photometry and with deep Simultaneous Quad Infrared Imaging Device observations off the central high-extinction region. We have more than doubled the known membership of this region to 57 Class I and 303 Class II YSOs via the combined 1-24{mu}m photometric catalog derived from these data. We construct and analyze the minimum spanning tree of their projected positions, isolating one locally overdense cluster core containing 219 YSOs (60.8% of the region's members). We find this cluster core to be larger yet less dense than similarly analyzed clusters. Although the structure of this cluster core appears irregular, we demonstrate that the parsec-scale surface densities of both YSOs and gas are correlated with a power-law slope of 2.8, as found for other similarly analyzed nearby molecular clouds. We also explore the mass segregation implications of AFGL 490's offset from the center of its core, finding that it has no apparent preferential central position relative to the low-mass members.
- ID:
- ivo://CDS.VizieR/J/ApJ/722/1226
- Title:
- IR photometry in {lambda} Orionis cluster
- Short Name:
- J/ApJ/722/1226
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (~5Myr) {lambda} Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450pc) and the age of the cluster, our sample ranges in mass from 2M_{sun}_ to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with "evolved disks" (with smaller excesses than optically thick disk systems), and "transitional disk" candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ~6% for K-type stars (R_C_-J<2) to ~27% for stars with spectral-type M5 or later (R_C_-J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the {lambda} Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ~5Myr.
- ID:
- ivo://CDS.VizieR/J/ApJ/788/122
- Title:
- IR photometry of YSO candidates toward SNR IC 443
- Short Name:
- J/ApJ/788/122
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have carried out ^12^CO, ^13^CO, and C^18^O observations toward the mixed morphology supernova remnant (SNR) IC 443. The observations cover a 1.5{deg}x1.5{deg} area and allow us to investigate the overall molecular environment of the remnant. Some northern and northeastern partial shell structure of CO gas is around the remnant. One of the partial shells, about 5' extending beyond the northeastern border of the remnant's bright radio shell, seems to just confine the faint radio halo. On the other hand, some faint CO clumps can be discerned along the eastern boundary of the faint remnant's radio halo. Connecting the eastern CO clumps, the northeastern partial shell structures, and the northern CO partial shell, we can see that a half molecular ring structure appears to surround the remnant. The LSR velocity of the half-ring structure is in the range of -5 km/s to -2 km/s, which is consistent with that of the -4 km/s molecular clouds. We suggest that the half-ring structure of the CO emission at V_LSR_~-4 km/s is associated with the SNR. The structures are possibly swept up by the stellar winds of SNR IC 443's massive progenitor. Based on the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey near-IR database, 62 young stellar object (YSO) candidates are selected within the radio halo of the remnant. These YSO candidates concentrated along the boundary of the remnant's bright radio shell are likely to be triggered by the stellar winds from the massive progenitor of SNR IC 443.
- ID:
- ivo://CDS.VizieR/J/ApJ/779/113
- Title:
- IR photometry of YSOs in the W40 region
- Short Name:
- J/ApJ/779/113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a multiwavelength study of the W40 star-forming region using infrared (IR) observations in the UKIRT JHK bands, Spitzer Infrared Array Camera bands, and Herschel PACS bands, 2.12{mu}m H_2_ narrowband imaging, and radio continuum observations from GMRT (610 and 1280MHz), in a field of view (FoV) of ~34'x40'. Archival Spitzer observations in conjunction with near-IR observations are used to identify 1162 Class II/III and 40 Class I sources in the FoV. The nearest-neighbor stellar surface density analysis shows that the majority of these young stellar objects (YSOs) constitute the embedded cluster centered on the high-mass source IRS 1A South. Some YSOs, predominantly the younger population, are distributed along and trace the filamentary structures at lower stellar surface density. The cluster radius is measured to be 0.44pc -- matching well with the extent of radio emission -- with a peak density of 650/pc2. The JHK data are used to map the extinction in the region, which is subsequently used to compute the cloud mass -- 126M_{sun}_ and 71M_{sun}_ for the central cluster and the northern IRS 5 region, respectively. H_2_ narrowband imaging shows significant emission, which prominently resembles fluorescent emission arising at the borders of dense regions. Radio continuum analysis shows that this region has a blister morphology, with the radio peak coinciding with a protostellar source. Free-free emission spectral energy distribution analysis is used to obtain physical parameters of the overall photoionized region and the IRS 5 sub-region.