- ID:
- ivo://CDS.VizieR/J/A+A/533/A121
- Title:
- Missing low-mass stars in S254-S258
- Short Name:
- J/A+A/533/A121
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The aim of this study was to find an explanation for the remarkable morphology of the central part of the S254-S258 star forming complex. We performed a deep Chandra X-ray observation of the S254-S258 region in order to efficiently discriminate young stars (with and without circumstellar matter) from the numerous older field stars in the area. We detected 364 X-ray point sources in a 17'x17' field. This X-ray catalog provides, for the first time, a complete sample of all young stars in the region down to about 0.5M_{sun}_.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/604/A78
- Title:
- M17 massive pms stars X-shooter spectra
- Short Name:
- J/A+A/604/A78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied HII regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the HII region are on their way to become main-sequence stars (~6-20M_{sun}_) after having undergone high mass accretion rates (dMacc/dt~10^-4^-10^-3^M_{sun}_/yr) Their spin distribution upon arrival at the zero age main-sequence (ZAMS) is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction.
- ID:
- ivo://CDS.VizieR/J/ApJ/853/171
- Title:
- mm point sources in the extended Sgr B2 cloud
- Short Name:
- J/ApJ/853/171
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report ALMA observations with resolution ~0.5" at 3mm of the extended Sgr B2 cloud in the Central Molecular Zone (CMZ). We detect 271 compact sources, most of which are smaller than 5000au. By ruling out alternative possibilities, we conclude that these sources consist of a mix of hypercompact HII regions and young stellar objects (YSOs). Most of the newly detected sources are YSOs with gas envelopes that, based on their luminosities, must contain objects with stellar masses M*>~8M_{sun}_. Their spatial distribution spread over a ~12x3pc region demonstrates that Sgr B2 is experiencing an extended star formation event, not just an isolated "starburst" within the protocluster regions. Using this new sample, we examine star formation thresholds and surface density relations in Sgr B2. While all of the YSOs reside in regions of high column density (N(H_2_)>~2x10^23^cm^-2^), not all regions of high column density contain YSOs. The observed column density threshold for star formation is substantially higher than that in solar vicinity clouds, implying either that high-mass star formation requires a higher column density or that any star formation threshold in the CMZ must be higher than in nearby clouds. The relation between the surface density of gas and stars is incompatible with extrapolations from local clouds, and instead stellar densities in Sgr B2 follow a linear {Sigma}_*_-{Sigma}_gas_ relation, shallower than that observed in local clouds. Together, these points suggest that a higher volume density threshold is required to explain star formation in CMZ clouds.
- ID:
- ivo://CDS.VizieR/J/ApJS/213/13
- Title:
- 1.3mm polarization maps of star-forming cores & SFRs
- Short Name:
- J/ApJS/213/13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present {lambda}1.3mm Combined Array for Research in Millimeter-wave Astronomy observations of dust polarization toward 30 star-forming cores and eight star-forming regions from the TADPOL survey. We show maps of all sources, and compare the ~2.5" resolution TADPOL maps with ~20" resolution polarization maps from single-dish submillimeter telescopes. Here we do not attempt to interpret the detailed B-field morphology of each object. Rather, we use average B-field orientations to derive conclusions in a statistical sense from the ensemble of sources, bearing in mind that these average orientations can be quite uncertain. We discuss three main findings. (1) A subset of the sources have consistent magnetic field (B-field) orientations between large (~20") and small (~2.5") scales. Those same sources also tend to have higher fractional polarizations than the sources with inconsistent large-to-small-scale fields. We interpret this to mean that in at least some cases B-fields play a role in regulating the infall of material all the way down to the ~1000AU scales of protostellar envelopes. (2) Outflows appear to be randomly aligned with B-fields; although, in sources with low polarization fractions there is a hint that outflows are preferentially perpendicular to small-scale B-fields, which suggests that in these sources the fields have been wrapped up by envelope rotation. (3) Finally, even at ~2.5" resolution we see the so-called polarization hole effect, where the fractional polarization drops significantly near the total intensity peak.
- ID:
- ivo://CDS.VizieR/J/ApJS/202/1
- Title:
- 1mm spectral line survey toward GLIMPSE EGOs
- Short Name:
- J/ApJS/202/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A northern subsample of 89 Spitzer GLIMPSE extended green objects (EGOs), the candidate massive young stellar objects, are surveyed for molecular lines in two 1GHz ranges: 251.5-252.5 and 260.188-261.188GHz. A comprehensive catalog of observed molecular line data and spectral plots are presented. Eight molecular species are undoubtedly detected: H^13^CO^+^, SiO, SO, CH_3_OH, CH_3_OCH_3_, CH_3_CH_2_CN, HCOOCH_3_, and HN^13^C. The H^13^CO^+^ 3-2 line is detected in 70 EGOs, among which 37 also show the SiO 6-5 line, demonstrating their association with dense gas and supporting the outflow interpretation of the extended 4.5um excess emission. Our major dense gas and outflow tracers (H^13^CO^+^, SiO, SO, and CH_3_OH) are combined with our previous survey of ^13^CO, ^12^CO, and C^18^O 1-0 toward the same sample of EGOs for a multi-line, multi-cloud analysis of linewidth and luminosity correlations.
- ID:
- ivo://CDS.VizieR/J/A+A/588/A104
- Title:
- Molecular clouds and star formation
- Short Name:
- J/A+A/588/A104
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- As a part of the Milky Way Imaging Scroll Painting (MWISP) survey, the aim is to study the physical properties of molecular clouds and their associated star formation toward the Galactic plane within 216.25{deg}<=l<=218.75{deg} and -0.75{deg}<=b<=1.25{deg}, which covers the molecular cloud complex S287. Using the 3x3 Superconducting Spectroscopic Array Receiver (SSAR) at the PMO-13.7m telescope, we performed a simultaneous ^12^CO (1-0), ^13^CO (1-0), C^18^O (1-0) mapping toward molecular clouds in a region encompassing 3.75 square degrees. The beam size is 52" for ^12^CO (1-0) and 55" for ^13^CO (1-0) and C^18^O (1-0).
- ID:
- ivo://CDS.VizieR/J/ApJ/839/113
- Title:
- Molecular clouds with GLIMPSE/MIPSGAL data
- Short Name:
- J/ApJ/839/113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the star-formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star-formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated with each IRAS source using ^13^CO line emission, and count the young stellar objects (YSOs) within these clouds using GLIMPSE and MIPSGAL 24{mu}m Spitzer databases. The masses for high-luminosity YSOs (L_bol_>10L_{sun}_) are determined individually using pre-main-sequence evolutionary tracks and the evolutionary stages of the sources, whereas a mean mass of 0.5M_{sun}_ was adopted to determine the masses in the low-luminosity YSO population. The star-formation rate surface density ({Sigma}SFR) corresponding to a gas surface density ({Sigma}gas) in each MC is obtained by counting the number of the YSOs within successive contours of ^13^CO line emission. We find a break in the relation between {Sigma}SFR and {Sigma}gas, with the relation being a power law ({Sigma}SFR{propto}{Sigma}gas^N^) with the index N varying between 1.4 and 3.6 above the break. The {Sigma}gas at the break is between 150-360M_{sun}_/pc^2^ for the sample clouds, which compares well with the threshold gas density found in recent studies of Galactic star-forming regions. Our clouds treated as a whole lie between the Kennicutt relation and the linear relation for Galactic and extra-galactic dense star-forming regions. We find a tendency for the high- mass YSOs to be found preferentially in dense regions at densities higher than 1200M_{sun}_/pc^2^ (~0.25g/cm^2^).
- ID:
- ivo://CDS.VizieR/J/A+A/570/A109
- Title:
- Molecular gas associated with IRAS 10361-5830
- Short Name:
- J/A+A/570/A109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze the distribution of the molecular gas and dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped HII region Gum 31 in the Carina region, with the aim of determining the main parameters of the associated material and of investigating the evolutionary state of the young stellar objects identified there.
- ID:
- ivo://CDS.VizieR/J/ApJ/710/150
- Title:
- Molecular lines in EGOs
- Short Name:
- J/ApJ/710/150
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the first systematic survey of molecular lines (including HCO^+^(1-0) and ^12^CO, ^13^CO, C^18^O(1-0) lines at the 3mm band) toward a new sample of 88 massive young stellar object (MYSO) candidates associated with ongoing outflows (known as extended green objects or EGOs) identified from the Spitzer GLIMPSE survey in the northern hemisphere with the Purple Mountain Observatory 13.7m radio telescope. By analyzing the asymmetries of the optically thick line HCO^+^ for 69 of 72 EGOs with HCO^+^ detection, we found 29 sources with "blue asymmetric profiles" and 19 sources with "red asymmetric profiles."
- ID:
- ivo://CDS.VizieR/J/MNRAS/454/4335
- Title:
- Multiwavelenght photometry of Sh 2-138 YSOs
- Short Name:
- J/MNRAS/454/4335
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a multiwavelength study of the Sh 2-138, a Galactic compact HII region. The data comprise of optical and near-infrared (NIR) photometric and spectroscopic observations from the 2-m Himalayan Chandra} Telescope, radio observations from the Giant Metrewave Radio Telescope (GMRT), and archival data covering radio through NIR wavelengths. A total of 10 Class I and 54 Class II young stellar objects (YSOs) are identified in a 4.6-arcminx4.6-arcmin area of the Sh 2-138 region. Five compact ionized clumps, with four lacking of any optical or NIR counterparts, are identified using the 1280MHz radio map, and correspond to sources with spectral type earlier than B0.5. Free-free emission spectral energy distribution fitting of the central compact HII region yields an electron density of ~2250+/-400cm^-3^. With the aid of a wide range of spectra, from 0.5-15{mu}m, the central brightest source - previously hypothesized to be the main ionizing source - is characterized as a Herbig Be type star. At large scale (15-arcminx15-arcmin), the Herschel images (70-500{mu}m) and the nearest neighbour analysis of YSOs suggest the formation of an isolated cluster at the junction of filaments. Furthermore, using a greybody fit to the dust spectrum, the cluster is found to be associated with the highest column density (~3x10^22^cm^-2^) and high temperature (~35K) regime, as well as with the radio continuum emission. The mass of the central clump seen in the column density map is estimated to be ~3770M_{sun}_.