- ID:
- ivo://CDS.VizieR/J/ApJS/224/5
- Title:
- The Herschel Orion Protostar Survey (HOPS): SEDs
- Short Name:
- J/ApJS/224/5
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present key results from the Herschel Orion Protostar Survey (HOPS): spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and submillimeter photometry from APEX, our SEDs cover 1.2-870{mu}m and sample the peak of the protostellar envelope emission at ~100{mu}m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/209/31
- Title:
- The MYStIX IR-Excess Source catalog (MIRES)
- Short Name:
- J/ApJS/209/31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes (d=0.4-3.6kpc). Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. We present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M17). We combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying our methodology consistently across 18 of the target complexes, we produce the MYStIX IRE Source (MIRES) Catalog comprising 20719 sources, including 8686 probable stellar members of the MYStIX target complexes. We also classify the SEDs of 9365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members.
- ID:
- ivo://CDS.VizieR/J/ApJS/193/25
- Title:
- The NAN complex. II. MIPS observations
- Short Name:
- J/ApJS/193/25
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present observations of ~7deg^2^ of the North American and Pelican Nebulae region at 24, 70, and 160um with the Spitzer Space Telescope Multiband I] ing Photometer for Spitzer (MIPS). We incorporate the MIPS observations with earlier Spitzer Infrared Array Camera (IRAC) observations, as well as archival near-infrared (IR) and optical data. We use the MIPS data to identify 1286 young stellar object (YSO) candidates. IRAC data alone can identify 806 more YSO candidates, for a total of 2076 YSO candidates. Prior to the Spitzer observations, there were only ~200 YSOs known in this region. Three subregions within the complex are highlighted as clusters: the Gulf of Mexico, the Pelican, and the Pelican's Hat. The Gulf of Mexico cluster is subject to the highest extinction (A_V_ at least ~30) and has the widest range of infrared colors of the three clusters, including the largest excesses and by far the most point-source detections at 70um. Just 3% of the cluster members were previously identified; we have redefined this cluster as about 10-100 times larger (in projected area) than was previously realized.
- ID:
- ivo://CDS.VizieR/J/ApJ/697/787
- Title:
- The NAN complex. I. IRAC observations
- Short Name:
- J/ApJ/697/787
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a 9deg^2^ map of the North American and Pelican Nebulae regions obtained in all four Infrared Array Camera (IRAC) channels with the Spitzer Space Telescope. The resulting photometry is merged with that at JHKs from Two Micron All Sky Survey and a more spatially limited BVI survey from previous ground-based work. We use a mixture of color-color diagrams to select a minimally contaminated set of more than 1600 objects that we claim are young stellar objects (YSOs) associated with the star-forming region. Because our selection technique uses infrared excess as a requirement, our sample is strongly biased against inclusion of Class III YSOs. The distribution of IRAC spectral slopes for our YSOs indicates that most of these objects are Class II, with a peak toward steeper spectral slopes but a substantial contribution from a tail of Flat spectrum and Class I type objects. By studying the small fraction of the sample that is optically visible, we infer a typical age of a few Myr for the low-mass population. The young stars are clustered, with about a third of them located in eight clusters that are located within or near the LDN 935 dark cloud. Half of the YSOs are located in regions with surface densities higher than 1000YSOs/deg^2^. The Class I objects are more clustered than the Class II stars.
- ID:
- ivo://CDS.VizieR/J/ApJS/208/11
- Title:
- The Red MSX Source Survey: massive protostars
- Short Name:
- J/ApJS/208/11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.
- ID:
- ivo://CDS.VizieR/J/A+A/507/795
- Title:
- The RMS survey: water masers of YSOs
- Short Name:
- J/A+A/507/795
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The red MSX source (RMS) survey has identified a large sample of candidate massive young stellar objects (MYSOs) and ultra compact (UC) HII regions from a sample of ~2000 MSX and 2MASS colour selected sources. To search for H_2_O masers towards a large sample of young high mass stars and to investigate the statistical correlation of H_2_O masers with the earliest stages of massive star formation. We have used the Mopra Radio telescope to make position-switched observations towards ~500 UCHII regions and MYSOs candidates identified from the RMS survey and located between 190{deg}<l<30{deg}. These observations have a 4{sigma} sensitivity of ~1Jy and a velocity resolution of ~0.4km/s.
- ID:
- ivo://CDS.VizieR/J/ApJ/716/474
- Title:
- The Rosette star-forming complex. III.
- Short Name:
- J/ApJ/716/474
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. We detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2<~M<~2M_{sun}_. Star locations in near-infrared color-magnitude diagrams indicate a cluster age around 2Myr with a visual extinction of 1<~A_V_<~3 at 1.4kpc, the distance of the Rosette Nebula's main cluster NGC 2244. We derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population ~400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. This X-ray view of young stars on the western side of the Rosette Nebula complements our earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding HII region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell material around the HII region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters.
- ID:
- ivo://CDS.VizieR/J/AJ/150/40
- Title:
- The Spitzer c2d survey of clouds. XII. Perseus
- Short Name:
- J/AJ/150/40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Spitzer Space Telescope mapped the Perseus molecular cloud complex with the Infrared Array Camera (IRAC) and the Multi-Band Imaging Photometer for Spitzer (MIPS) as part of the c2d Spitzer Legacy project. This paper combines the observations from both instruments giving an overview of low-mass star formation across Perseus from 3.6 to 70{mu}m. We provide an updated list of young stellar objects (YSOs) with new classifications and source fluxes from previous works, identifying 369 YSOs in Perseus with the Spitzer data set. By synthesizing the IRAC and MIPS maps of Perseus and building on the work of previous papers in this series, we present a current census of star formation across the cloud and within smaller regions. Sixty-seven percent of the YSOs are associated with the young clusters NGC 1333 and IC 348. The majority of the star formation activity in Perseus occurs in the regions around the clusters to the eastern and western ends of the cloud complex. The middle of the cloud is nearly empty of YSOs despite containing regions of high visual extinction. The western half of Perseus contains three-quarters of the total number of embedded YSOs (Class 0+I and Flat spectral energy distribution sources) in the cloud and nearly as many embedded YSOs as Class II and III sources. Class II and III objects greatly outnumber Class 0+I objects in eastern Perseus and IC 348. These results are consistent with previous age estimates for the clusters. Across the cloud, 56% of YSOs and 91% of the Class 0+I and Flat sources are in areas where A_v_>=5mag, indicating a possible extinction threshold for star formation.
- ID:
- ivo://CDS.VizieR/J/ApJ/724/835
- Title:
- The Spitzer c2d survey of WTTSs. III.
- Short Name:
- J/ApJ/724/835
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 3.6 to 70um Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8um) and the 24um MIPS band. In the 70um MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r=3-50AU) around WTTSs. The 70um photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. (2006ApJ...645.1283P) and Cieza et al. (2007, Cat. J/ApJ/667/308) are presented here for the first time.
- ID:
- ivo://CDS.VizieR/J/A+A/572/A116
- Title:
- The VISTA Carina Nebula Survey
- Short Name:
- J/A+A/572/A116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Carina Nebula is one of the most massive and active star-forming regions in our Galaxy and has been studied with numerous multiwavelength observations in the past five years. However, most of these studies were restricted to the inner parts (<=1 square-degree) of the nebula, and thus covered only a small fraction of the whole cloud complex. Our aim was to conduct a near-infrared survey that covers the full spatial extent (~5 square-degrees) of the Carina Nebula complex and is sensitive enough to detect all associated young stars through extinctions of up to A_V_~~6mag. We used the 4m Visible and Infrared Survey Telescope for Astronomy (VISTA) of ESO to map an area of 6.7 square-degrees around the Carina Nebula in the near-infrared J-, H-, Ks-bands.