- ID:
- ivo://CDS.VizieR/J/AJ/160/44
- Title:
- Upper Scorpius spectroscopy and photometry
- Short Name:
- J/AJ/160/44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have refined the census of stars and brown dwarfs in the Upper Sco association (~10Myr, ~145pc) by (1) updating the selection of candidate members from our previous survey to include the high-precision astrometry from the second data release of Gaia, (2) obtaining spectra of a few hundred candidate members to measure their spectral types and verify their youth, and (3) assessing the membership (largely with Gaia astrometry) of 2020 stars toward Upper Sco that show evidence of youth in this work and previous studies. We arrive at a catalog of 1761 objects that are adopted as members of Upper Sco. The distribution of spectral types among the adopted members is similar to those in other nearby star-forming regions, indicating a similar initial mass function. In previous studies, we have compiled mid-infrared photometry from the Wide-field Infrared Survey Explorer and the Spitzer Space Telescope for members of Upper Sco and used those data to identify the stars that show evidence of circumstellar disks; we present the same analysis for our new catalog of members. As in earlier work, we find that the fraction of members with disks increases with lower stellar masses, ranging from <~10% for >1M{sun} to ~22% for 0.01-0.3M{sun}. Finally, we have estimated the relative ages of Upper Sco and other young associations using their sequences of low-mass stars in M_G_RP__ versus G_BP_-G_RP_. This comparison indicates that Upper Sco is a factor of two younger than the {beta}Pic association (21-24Myr) according to both nonmagnetic and magnetic evolutionary models.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/703/614
- Title:
- UV star-forming regions in M31
- Short Name:
- J/ApJ/703/614
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a comprehensive study of star-forming (SF) regions in the nearest large spiral galaxy M31. We use Galaxy Evolution Explorer (GALEX) far-UV (1344-1786{AA}, FUV) and near-UV (1771-2831{AA}, NUV) imaging to detect young massive stars and trace the recent star formation across the galaxy. The FUV and NUV flux measurements of the SF regions, combined with ground-based data for estimating the reddening by interstellar dust from the massive stars they contain, are used to derive their ages and masses. The GALEX imaging, combining deep sensitivity and coverage of the entire galaxy, provides a complete picture of the recent star formation in M31 and its variation with environment throughout the galaxy. The FUV and NUV measurements are sensitive to detect stellar populations younger than a few hundred Myr. We detected 894 SF regions, with size >=1600pc^2^ above an average FUV flux limit of ~26ABmag/arcsecond^2^, over the whole 26kpc (radius) galaxy disk. We derive the star formation history of M31 within this time span. The star formation rate (SFR) from the youngest UV sources (age <=10Myr) is comparable to that derived from H{alpha}, as expected.
- ID:
- ivo://CDS.VizieR/J/A+A/581/A66
- Title:
- UV variability and accretion in NGC 2264
- Short Name:
- J/A+A/581/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Photometric variability is a distinctive feature of young stellar objects; exploring variability signatures at different wavelengths provides insight into the physical processes at work in these sources. We explore the variability signatures at ultraviolet (UV) and optical wavelengths for several hundred accreting and non-accreting members of the star-forming region NGC 2264 (~3Myr).
- ID:
- ivo://CDS.VizieR/J/ApJ/899/128
- Title:
- Validated & new members of NGC 7000/IC 5070 Complex
- Short Name:
- J/ApJ/899/128
- Date:
- 14 Mar 2022 07:05:45
- Publisher:
- CDS
- Description:
- We examine the clustering and kinematics of young stellar objects (YSOs) in the North America/Pelican Nebulae, as revealed by Gaia astrometry, in relation to the structure and motions of the molecular gas, as indicated in molecular-line maps. The Gaia parallaxes and proper motions allow us to significantly refine previously published lists of YSOs, demonstrating that many of the objects previously thought to form a distributed population turn out to be nonmembers. The members are subdivided into at least six spatio-kinematic groups, each of which is associated with its own molecular cloud component or components. Three of the groups are expanding, with velocity gradients of 0.3-0.5km/s/pc, up to maximum velocities of ~8km/s away from the groups' centers. The two known O-type stars associated with the region, 2MASS J20555125+4352246 and HD 199579, are rapidly escaping one of these groups, following the same position-velocity relation as the low-mass stars. We calculate that a combination of gas expulsion and tidal forces from the clumpy distribution of molecular gas could impart the observed velocity gradients within the groups. However, on a global scale, the relative motions of the groups do not appear either divergent or convergent. The velocity dispersion of the whole system is consistent with the kinetic energy gained due to gravitational collapse of the complex. Most of the stellar population has ages similar to the freefall timescales for the natal clouds. Thus, we suggest the nearly freefall collapse of a turbulent molecular cloud as the most likely scenario for star formation in this complex.
- ID:
- ivo://CDS.VizieR/J/ApJS/238/19
- Title:
- VANDAM IV. Free-free emission from protostars
- Short Name:
- J/ApJS/238/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Emission from protostars at centimeter radio wavelengths has been shown to trace the free-free emission arising from ionizing shocks as a result of jets and outflows driven by protostars. Therefore, measuring properties of protostars at radio frequencies can provide valuable insights into the nature of their outflows and jets. We present a C-band (4.1 and 6.4cm) survey of all known protostars (Class0 and ClassI) in Perseus as part of the VLA Nascent Disk and Multiplicity (VANDAM) Survey. We examine the known correlations between radio flux density and protostellar parameters, such as bolometric luminosity and outflow force, for our sample. We also investigate the relationship between radio flux density and far-infrared line luminosities from Herschel. We show that free-free emission most likely originates from J-type shocks; however, the large scatter indicates that those two types of emission probe different time and spatial scales. Using C-band fluxes, we removed an estimation of free-free contamination from the corresponding Ka- band (9mm) flux densities that primarily probe dust emission from embedded disks. We find that the compact (<1") dust emission is lower for Class I sources (median dust mass 96M_{Earth}_) relative to Class 0 (248M_{Earth}_), but several times higher than in Class II (5-15M_{Earth}_). If this compact dust emission is tracing primarily the embedded disk, as is likely for many sources, this result provides evidence of decreasing disk masses with protostellar evolution, with sufficient mass for forming giant planet cores primarily at early times.
- ID:
- ivo://CDS.VizieR/J/ApJ/890/130
- Title:
- VANDAM survey of Orion protostars. II.
- Short Name:
- J/ApJ/890/130
- Date:
- 07 Mar 2022 13:26:15
- Publisher:
- CDS
- Description:
- We have conducted a survey of 328 protostars in the Orion molecular clouds with the Atacama Large Millimeter/submillimeter Array at 0.87mm at a resolution of ~0.1" (40au), including observations with the Very Large Array at 9mm toward 148 protostars at a resolution of ~0.08" (32au). This is the largest multiwavelength survey of protostars at this resolution by an order of magnitude. We use the dust continuum emission at 0.87 and 9mm to measure the dust disk radii and masses toward the Class 0, Class I, and flat-spectrum protostars, characterizing the evolution of these disk properties in the protostellar phase. The mean dust disk radii for the Class 0, Class I, and flat-spectrum protostars are 44.9_-3.4_^+5.8^, 37.0_-3.0_^+4.9^, and 28.5_-2.3_^+3.7^au, respectively, and the mean protostellar dust disk masses are 25.9_-4.0_^+7.7^, 14.9_-2.2_^+3.8^, 11.6_-1.9_^+3.5^M_{Earth}_, respectively. The decrease in dust disk masses is expected from disk evolution and accretion, but the decrease in disk radii may point to the initial conditions of star formation not leading to the systematic growth of disk radii or that radial drift is keeping the dust disk sizes small. At least 146 protostellar disks (35% of 379 detected 0.87mm continuum sources plus 42 nondetections) have disk radii greater than 50au in our sample. These properties are not found to vary significantly between different regions within Orion. The protostellar dust disk mass distributions are systematically larger than those of Class II disks by a factor of >4, providing evidence that the cores of giant planets may need to at least begin their formation during the protostellar phase.
- ID:
- ivo://CDS.VizieR/J/ApJ/773/54
- Title:
- Variable stars in and around NGC 2264 with BEST
- Short Name:
- J/ApJ/773/54
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Time-series photometry of the CoRoT field SRa01 was carried out with the Berlin Exoplanet Search Telescope II in 2008/2009. A total of 1161 variable stars were detected, of which 241 were previously known and 920 are newly found. Several new, variable young stellar objects have been discovered. The study of the spatial distribution of eclipsing binaries revealed the higher relative frequency of Algols toward the center of the young open cluster NGC 2264. In general Algol frequency obeys an isotropic distribution of their angular momentum vectors, except inside the cluster, where a specific orientation of the inclinations is the case. We suggest that we see the orbital plane of the binaries almost edge-on.
- ID:
- ivo://CDS.VizieR/J/A+A/585/A49
- Title:
- VCNS II. The IR-excess-selected population
- Short Name:
- J/A+A/585/A49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We performed a deep wide-field (6.76 square-degrees) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex. Complementing the VISTA near-infrared catalog with Spitzer IRAC mid-infrared photometry improves the situation of the background contamination considerably. We find that a (J-H) versus (Ks-[4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrared excess, which we consider as cYSOs. This sample is used to investigate the spatial distribution of the cYSOs with a nearest-neighbor analysis. The surface density distribution of cYSOs agrees well with the shape of the clouds as seen in our Herschel far-infrared survey. The strong decline in the surface density of excess sources outside the area of the clouds supports the hypothesis that our excess-selected sample consists predominantly of cYSOs with a low level of background contamination.
- ID:
- ivo://CDS.VizieR/J/AJ/136/1372
- Title:
- Very low-mass YSOs in NGC 1333
- Short Name:
- J/AJ/136/1372
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a deep near-infrared (NIR) imaging survey searching for very low mass young stellar objects (YSOs) in the embedded cluster associated with the Perseus molecular cloud. Our observations cover an area of ~5'x5' in the NGC 1333-S region at J-, H-, and Ks-bands. The 10{sigma} limiting magnitudes exceed 18mag in all three bands. Based on NIR color-color diagrams, embedded YSO candidates were identified using NIR excesses.
- ID:
- ivo://CDS.VizieR/J/A+A/622/A149
- Title:
- Vienna survey in Orion. III.
- Short Name:
- J/A+A/622/A149
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have extended and refined the existing young stellar object (YSO) catalogs for the Orion A molecular cloud, the closest massive star-forming region to Earth. This updated catalog is driven by the large spatial coverage (18.3deg^2^, ~950pc^2^), seeing limited resolution (~0.7''), and sensitivity (K_s_<19mag) of the ESO-VISTA near-infrared survey of the Orion A cloud (VISION). Combined with archival mid- to far-infrared data, the VISTA data allow for a refined and more robust source selection. We estimate that among previously known protostars and pre-main-sequence stars with disks, source contamination levels (false positives) are at least ~6.4% and ~2.3%, respectively, mostly due to background galaxies and nebulosities. We identify 274 new YSO candidates using VISTA/Spitzer based selections within previously analyzed regions, and VISTA/WISE based selections to add sources in the surroundings, beyond previously analyzed regions. The WISE selection method recovers about 59% of the known YSOs in Orion A's low-mass star-forming part L1641, which shows what can be achieved by the all-sky WISE survey in combination with deep near-infrared data in regions without the influence of massive stars. The new catalog contains 2980 YSOs, which were classified based on the de-reddened mid-infrared spectral index into 188 protostars, 185 flat-spectrum sources, and 2607 pre-main-sequence stars with circumstellar disks. We find a statistically significant difference in the spatial distribution of the three evolutionary classes with respect to regions of high dust column-density, confirming that flat-spectrum sources are at a younger evolutionary phase compared to Class IIs, and are not a sub-sample seen at particular viewing angles.