- ID:
- ivo://CDS.VizieR/J/A+A/567/A109
- Title:
- Carina nebula optically identified YSOs
- Short Name:
- J/A+A/567/A109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The low obscuration and proximity of the Carina nebula make it an ideal place to study the ongoing star formation process and impact of massive stars on low-mass stars in their surroundings. To investigate this process, we have generated a new catalogue of the pre-main-sequence (PMS) stars in the Carina west (CrW) region and studied their nature and spatial distribution. We have also determined various parameters (reddening, reddening law, age, mass) which are further used to estimate the initial mass function (IMF) and K-band luminosity function (KLF) for the region under study. We obtained deep UBVRI H{alpha} photometric data of the field situated to the west of the main Carina nebula and centered around WR22. Medium-resolution optical spectroscopy of a subsample of X-ray selected objects along with archival data sets from Chandra, XMM-Newton and 2MASS surveys are used for the present study. Our spectroscopic results indicate that the majority of the X-ray sources are late spectral type stars. The region shows a large amount of differential reddening with minimum and maximum values of E(B-V) as 0.25 and 1.1mag, respectively. Our analysis reveals that the total to selective absorption ratio R_V_ is ~3.7+/-0.1 suggesting an abnormal grain size in the observed region. We identify 467 young stellar objects (YSOs) and study their characteristics. The ages and masses of the 241 optically identified YSOs range from ~0.1 to 10Myr and ~0.3 to 4.8M_{sun}_, respectively. However, the majority of them are younger than 1Myr and have masses below 2M_{sun}_. The high mass star WR22 does not seem to have contributed to the formation of YSOs in the CrW region. The initial mass function slope, Gamma in this region is found to be -1.13+/-0.20 in the mass range of 0.5<M/M_{sun}_<4.8. The K-band luminosity function slope ({alpha}) is also estimated as 0.31+/-0.01. We also performed minimum spanning tree analysis of the YSOs in this region which reveals that there are at least ten YSO cores associated with the molecular cloud and that leads to an average core radius and median branch length 0.43pc and 0.28pc, respectively.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/584/A91
- Title:
- Catalog of dense cores in Aquila from Herschel
- Short Name:
- J/A+A/584/A91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present and discuss the results of the Herschel Gould Belt survey (HGBS) observations in an ~11deg^2^ area of the Aquila molecular cloud complex at d~260pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70-micron to 500-micron. Using the multi-scale, multi-wavelength source extraction algorithm getsources, we identify a complete sample of starless dense cores and embedded (Class 0-I) protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% +/-10% of which are gravitationally bound prestellar cores, and they will likely form stars in the future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the large population of prestellar cores is very similar in shape to the stellar initial mass function (IMF), confirming earlier findings on a much stronger statistical basis and supporting the view that there is a close physical link between the stellar IMF and the prestellar CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40% at the level of an individual core. By comparing the numbers of starless cores in various density bins to the number of young stellar objects (YSOs), we estimate that the lifetime of prestellar cores is ~1Myr, which is typically ~4 times longer than the core free-fall time, and that it decreases with average core density. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments observed in the Aquila complex. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to A_V_~7, and ~75% of them lie within filamentary structures with supercritical masses per unit length >~16M_{sun}_/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at A_V_>7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic "efficiency" SFR/M_dense_~5+/-2x10^-8^yr^-1^ for the star formation process in dense gas.
- ID:
- ivo://CDS.VizieR/J/A+A/638/A74
- Title:
- Catalog of dense cores in Oph molecular cloud
- Short Name:
- J/A+A/638/A74
- Date:
- 02 Mar 2022 11:56:27
- Publisher:
- CDS
- Description:
- Herschel observations of nearby clouds in the Gould Belt support a paradigm for low-mass star formation, starting with the generation of molecular filaments, followed by filament fragmentation, and the concentration of mass into self-gravitating prestellar cores. With the unique far-infrared and submillimeter continuum imaging capabilities of the Herschel Space observatory, the closeby (d=139pc) Ophiuchus cloud was mapped at five wavelengths from 70 microns to 500 microns with the aim of providing a complete census of dense cores in this region, including unbound starless cores, bound prestellar cores, and protostellar cores. Taking advantage of the high dynamic range and multi-wavelength nature of the Herschel data, we used the multi-scale decomposition algorithms getsources and getfilaments to identify a complete sample of dense cores and filaments in the cloud and study their properties. The densest clouds of the Ophiuchus complex, L1688 and L1689, which thus far are only indirectly described as filamentary regions owing to the spatial distribution of their young stellar objects (YSOs), are confirmed to be dominated by filamentary structures. The tight correlation observed between prestellar cores and filamentary structures in L1688 and L1689 supports the view that solar-type star formation occurs primarily in dense filaments. While the sub clouds of the complex show disparities, L1689 being less efficient than L1688 at forming stars when considering their total mass budgets, both sub clouds share almost the same prestellar core formation efficiency in dense molecular gas. We also find evidence in the Herschel data for a remarkable concentric geometrical configuration in L1688 which is dominated by up to three arc-like compression fronts and presumably created by shockwave events emanating from the Sco OB2 association, including the neighboring massive (O9V) star sigma Sco.
- ID:
- ivo://CDS.VizieR/J/A+A/635/A34
- Title:
- Catalog of dense cores in Orion B from Herschel
- Short Name:
- J/A+A/635/A34
- Date:
- 14 Jan 2022 08:07:23
- Publisher:
- CDS
- Description:
- We present a detailed study of the Orion B molecular cloud complex (d~400pc), which was imaged with the PACS and SPIRE photometric cameras at wavelengths from 70-micron to 500-micron as part of the Herschel Gould Belt survey (HGBS). We release new high-resolution maps of column density and dust temperature for the whole complex, derived in the same consistent manner as for other HGBS regions. In the filamentary subregions NGC2023 and 2024, NGC2068 and 2071, and L1622, a total of 1768 starless dense cores were identified based on Herschel data, 490-804 (~28-45%) of which are self-gravitating prestellar cores that will likely form stars in the future. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was estimated to be t_pre_^OrionB^=1.7(-0.6/+0.8)Myr. The prestellar core mass function (CMF) derived for the whole sample of prestellar cores peaks at ~0.5Msun (in dN/dlogM format) and is consistent with a power-law with logarithmic slope -1.27+/-0.24 at the high-mass end, compared to the Salpeter slope of -1.35. In the Orion B region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value A_V_^bg^~7mag in background visual extinction, which is similar to the trend observed with Herschel in other regions, such as the Aquila cloud. This is not a sharp threshold, however, but a smooth transition between a regime with very low prestellar CFE at A_V_^bg^<5 and a regime with higher, roughly constant CFE at A_V_^bg^>~10. The total mass in the form of prestellar cores represents only a modest fraction (~20%) of the dense molecular cloud gas above A_V_^bg^>~7mag. About 60-80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation observed between nearest core neighbors corresponds to the typical inner filament width of ~0.1pc, which is commonly observed in nearby molecular clouds, including Orion B. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.
- ID:
- ivo://CDS.VizieR/V/112A
- Title:
- Catalog of Star-Forming Regions in the Galaxy
- Short Name:
- V/112A
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This Catalog of Star-Forming Regions in the Galaxy contains coordinates and fluxes of young objects in the radio and infrared, as well as data on the radial velocities of recombination and molecular lines, for more than three thousand star-forming regions. In addition to photometric and kinematic data, we present information on diffuse and reflecting nebulae, dark and molecular clouds, and other objects related to young stars. The catalog consists of two parts. The main catalog lists star-forming regions in order of Galactic longitude and is supplemented by analogous information for star-forming regions in complexes of dark clouds with large angular sizes that are closest to the Sun. In our preliminary study of the catalog data using a formal classification of the star-forming regions, we subdivided these objects into several classes and characterized them as being populated primarily by massive or low-mass stars at early or late stages of the star-formation process. We also distinguish between relatively nearby and distant complexes.
- ID:
- ivo://CDS.VizieR/J/AJ/153/95
- Title:
- Catalog of Suspected Nearby Young Stars
- Short Name:
- J/AJ/153/95
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new nearby young moving group (NYMG) kinematic membership analysis code, LocAting Constituent mEmbers In Nearby Groups (LACEwING), a new Catalog of Suspected Nearby Young Stars, a new list of bona fide members of moving groups, and a kinematic traceback code. LACEwING is a convergence-style algorithm with carefully vetted membership statistics based on a large numerical simulation of the Solar Neighborhood. Given spatial and kinematic information on stars, LACEwING calculates membership probabilities in 13 NYMGs and three open clusters within 100 pc. In addition to describing the inputs, methods, and products of the code, we provide comparisons of LACEwING to other popular kinematic moving group membership identification codes. As a proof of concept, we use LACEwING to reconsider the membership of 930 stellar systems in the Solar Neighborhood (within 100 pc) that have reported measurable lithium equivalent widths. We quantify the evidence in support of a population of young stars not attached to any NYMGs, which is a possible sign of new as-yet-undiscovered groups or of a field population of young stars.
- ID:
- ivo://CDS.VizieR/J/A+A/392/971
- Title:
- Catalogue of bright YSO candidates in ISOGAL
- Short Name:
- J/A+A/392/971
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The 7 and 15{mu}m observations of selected fields in the Galactic Plane obtained with ISOCAM during the ISOGAL program offer an unique possibility to search for previously unknown YSOs, undetected by IRAS because of lower sensitivity or confusion problems. In a previous paper (Felli et al., 2000, Cat. <J/A+A/362/199>) we established criteria of general validity to select YSOs from the much larger population of Post Main Sequence (Post-MS) stars present in the ISOGAL fields by comparing radio and IR observations of five fields located at l~45{deg}. The selection was based primarily on the position of the point sources in the [15]-([7]-[15]) diagram, which involves only ISOGAL data and allows to find possible YSOs using the survey data alone. In the present work we revise the adopted criteria by comparing radio-identified ultra-compact HII regions and ISOGAL observations over a much larger region. The main indications of the previous analysis are confirmed, but the criteria for selecting YSO candidates had to be revised to select only bright objects, in order to limit the contamination of the sample by Post-MS stars. The revised criteria ([15]<=4.5, [7]-[15]>=1.8) are then used to extract YSO candidates from the ISOGAL Point Source Catalogue in preparation. We select a total of 715 YSO candidates, corresponding to ~2 of the sources with good detections at 7 and 15{mu}m. The results are presented in a table form that provides an unique input list of small diameter, <=6", Galactic YSO candidates. The global properties of the sample of YSO candidates are briefly discussed.
- ID:
- ivo://CDS.VizieR/J/A+AS/115/285
- Title:
- Catalogue of massive young stellar objects
- Short Name:
- J/A+AS/115/285
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A catalogue of massive young stellar objects which contains about 250 objects is presented. This catalogue is an updated version of the catalogue of Henning et al. (1984AN....305...67H). It provides comprehensive information on infrared and radio flux densities, molecular line data, association with maser sources, and outflow phenomena.
- ID:
- ivo://CDS.VizieR/J/ApJ/678/985
- Title:
- c2d Spitzer survey of interstellar ices. I.
- Short Name:
- J/ApJ/678/985
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- To study the physical and chemical evolution of ices in solar-mass systems, a spectral survey is conducted of a sample of 41 low-luminosity YSOs (L~0.1-10L_{sun}_) using 3-38um Spitzer and ground-based spectra. The sample is complemented with previously published Spitzer spectra of background stars and with ISO spectra of well-studied massive YSOs (L~10^5^L_{sun}_). The long-known 6.0 and 6.85um bands are detected toward all sources, with the Class 0-type YSOs showing the deepest bands ever observed. The 6.0um band is often deeper than expected from the bending mode of pure solid H_2_O. The additional 5-7um absorption consists of five independent components, which, by comparison to laboratory studies, must be from at least eight different carriers. Much of this absorption is due to simple species likely formed by grain surface chemistry, at abundances of 1%-30% for CH_3_OH, 3%-8% for NH_3_, 1%-5% for HCOOH, ~6% for H_2_CO, and ~0.3% for HCOO- relative to solid H_2_O. The 6.85um band has one or two carriers, of which one may be less volatile than H_2_O. Its carrier(s) formed early in the molecular cloud evolution and do not survive in the diffuse ISM. If an NH_4_^+^ -containing salt is the carrier, its abundance relative to solid H_2_O is ~7%, demonstrating the efficiency of low-temperature acid-base chemistry or cosmic-ray-induced reactions. Possible origins are discussed for enigmatic, very broad absorption between 5 and 8um. Finally, the same ices are observed toward massive and low-mass YSOs, indicating that processing by internal UV radiation fields is a minor factor in their early chemical evolution.
- ID:
- ivo://CDS.VizieR/J/ApJS/115/59
- Title:
- Cepheus flare molecular clouds
- Short Name:
- J/ApJS/115/59
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Results of an objective prism Schmidt survey are combined with IRAS survey data in order to assess the star-forming activity in the Cepheus Flare, a nearby giant molecular cloud complex at ~15{deg} above the Galactic equator. The distribution of absorbing matter along the line of sight was also studied. The Wolf diagrams, displaying the cumulative distribution of field star distance moduli, show that the interstellar matter in this region is concentrated at three characteristic distances: 200, 300, and 450pc. The three components, though partly overlapping, can be separated along the Galactic latitude. Within the area of the Cepheus Flare, distances are determined for 14 Lynds dark clouds and for some other clouds.