- ID:
- ivo://CDS.VizieR/J/ApJ/787/108
- Title:
- Age estimates for massive SFR stellar populations
- Short Name:
- J/ApJ/787/108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age_JX_. Stellar masses are derived from X-ray luminosities using the L_X_-M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age_JX_ is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud to widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age_JX_ method has been applied to 5525 out of 31784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age_JX_ ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J-H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/787/109
- Title:
- Age estimates for NGC 2024 and ONC stars
- Short Name:
- J/ApJ/787/109
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age_JX_, derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024 cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age_JX_ estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.
- ID:
- ivo://CDS.VizieR/J/MNRAS/478/784
- Title:
- Age estimates of SMC clusters
- Short Name:
- J/MNRAS/478/784
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Small Magellanic Cloud (SMC) has recently been found to harbour an increase of more than 200 per cent in its known cluster population. Here, we provide solid evidence that this unprecedented number of clusters could be greatly overestimated. On the one hand, the fully automatic procedure used to identify such an enormous cluster candidate sample did not recover ~50 per cent, on average, of the known relatively bright clusters located in the SMC main body. On the other hand, the number of new cluster candidates per time unit as a function of time is noticeably different from the intrinsic SMC cluster frequency (CF), which should not be the case if these new detections were genuine physical systems. We found additionally that the SMC CF varies spatially, in such a way that it resembles an outside-in process coupled with the effects of a relatively recent interaction with the Large Magellanic Cloud. By assuming that clusters and field stars share the same formation history, we showed for the first time that the cluster dissolution rate also depends on position in the galaxy. The cluster dissolution becomes higher as the concentration of galaxy mass increases or if external tidal forces are present.
- ID:
- ivo://CDS.VizieR/J/ApJ/687/1264
- Title:
- Age estimation for solar-type dwarfs
- Short Name:
- J/ApJ/687/1264
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- While the strong anticorrelation between chromospheric activity and age has led to the common use of the CaII H and K emission index (R'_HK_=L_HK_/L_bol_) as an empirical age estimator for solar-type dwarfs, existing activity-age relations produce implausible ages at both high and low activity levels. We have compiled R'_HK_, data from the literature for young stellar clusters, richly populating for the first time the young end of the activity-age relation. Combining the cluster activity data with modern cluster age estimates and analyzing the color dependence of the chromospheric activity age index, we derive an improved activity-age calibration for F7-K2 dwarfs (0.5<B-V<0.9mag). We also present a more fundamentally motivated activity-age calibration that relies on conversion of R'_HK_ values through the Rossby number to rotation periods and then makes use of improved gyrochronology relations.
- ID:
- ivo://CDS.VizieR/J/A+A/394/927
- Title:
- Age-metallicity relation for nearby stars
- Short Name:
- J/A+A/394/927
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ages, Fe and Ca abundances, orbits, and populations for 1658 solar neighbourhood stars are presented. Stars are selected from Hipparcos (Cat. <II/239> Catalogue.
- ID:
- ivo://CDS.VizieR/J/A+A/377/911
- Title:
- Age-metallicity relation in solar neighbourhood
- Short Name:
- J/A+A/377/911
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We derive stellar ages, from evolutionary tracks, and metallicities, from Stroemgren photometry, for a sample of 5828 dwarf and sub-dwarf stars from the Hipparcos (Cat. <I/239>) Catalogue. This stellar disk sample is used to investigate the age-metallicity diagram in the solar neighbourhood. Such diagrams are often used to derive a so called age-metallicity relation. Because of the size of our sample, we are able to quantify the impact on such diagrams, and derived relations, due to different selection effects. Some of these effects are of a more subtle sort, giving rise to erroneous conclusions. In particular we show that [1] the age-metallicity diagram is well populated at all ages and especially that old, metal-rich stars do exist, [2] the scatter in metallicity at any given age is larger than the observational errors, [3] the exclusion of cooler dwarf stars from an age-metallicity sample preferentially excludes old, metal-rich stars, depleting the upper right-hand corner of the age-metallicity diagram, [4] the distance dependence found in the Edvardsson et al. (1993, Cat. <J/A+A/275/101>) sample by Garnett & Kobulnicky (2000ApJ...532.1192G) is an expected artifact due to the construction of the original sample. We conclude that, although some of it can be attributed to stellar migration in the galactic disk, a large part of the observed scatter is intrinsic to the formation processes of stars.
- ID:
- ivo://CDS.VizieR/J/ApJ/647/1075
- Title:
- Age-metallicity relation of {omega} Cen
- Short Name:
- J/ApJ/647/1075
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a metallicity distribution based on photometry and spectra for 442 Omega Centauri cluster members that lie at the main-sequence turnoff region of the color-magnitude diagram. This distribution is similar to that found for the red giant branch. The distribution shows a sharp rise to a mean of [Fe/H]=-1.7 with a long tail to higher metallicities. Ages have then been determined for the stars using theoretical isochrones enabling the construction of an age-metallicity diagram. Interpretation of this diagram is complicated by the correlation of the errors in the metallicities and ages. Nevertheless, after extensive Monte Carlo simulations, we conclude that our data show that the formation of the cluster took place over an extended period of time: the most metal-rich stars in our sample ([Fe/H]~-0.6) are younger by 2-4Gyr than the most metal-poor population.
- ID:
- ivo://CDS.VizieR/J/MNRAS/385/1270
- Title:
- Age-metallicity relation via photometry
- Short Name:
- J/MNRAS/385/1270
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u, B, g, V, r, R, i, I, z, J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A108
- Title:
- Age of 269 GDR2 open clusters
- Short Name:
- J/A+A/623/A108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Gaia Second Data Release provides precise astrometry and photometry for more than 1.3 billion sources. This catalog opens a new era concerning the characterization of open clusters and test stellar models, paving the way for better understanding of the disk properties. The aim of the paper is to improve the knowledge of cluster parameters, using only the unprecedented quality of the Gaia photometry and astrometry. We have made use of the membership determination based on the precise Gaia astrometry and photometry. We applied an automated Bayesian tool, BASE-9, to fit stellar isochrones on the observed G, GBP, GRP magnitudes of the high probability member stars. We derive parameters such as age, distance modulus, and extinction for a sample of 269 open clusters, selecting only low reddening objects and discarding very young clusters, for which techniques other than isochrone-fitting are more suitable for estimating ages.
- ID:
- ivo://CDS.VizieR/J/AJ/161/100
- Title:
- Ages and alpha-abundances of population in K2
- Short Name:
- J/AJ/161/100
- Date:
- 19 Jan 2022 13:30:38
- Publisher:
- CDS
- Description:
- We explore the relationships between the chemistry, ages, and locations of stars in the Galaxy using asteroseismic data from the K2 mission and spectroscopic data from the Apache Point Galactic Evolution Experiment survey. Previous studies have used giant stars in the Kepler field to map the relationship between the chemical composition and the ages of stars at the solar circle. Consistent with prior work, we find that stars with high [{alpha}/Fe] have distinct, older ages in comparison to stars with low [{alpha}/Fe]. We provide age estimates for red giant branch (RGB) stars in the Kepler field, which support and build upon previous age estimates by taking into account the effect of {alpha}-enrichment on opacity. Including this effect for [{alpha}/Fe]-rich stars results in up to 10% older ages for low- mass stars relative to corrected solar mixture calculations. This is a significant effect that Galactic archeology studies should take into account. Looking beyond the Kepler field, we estimate ages for 735 RGB stars from the K2 mission, mapping age trends as a function of the line of sight. We find that the age distributions for low- and high-[{alpha}/Fe] stars converge with increasing distance from the Galactic plane, in agreement with suggestions from earlier work. We find that K2 stars with high [{alpha}/Fe] appear to be younger than their counterparts in the Kepler field, overlapping more significantly with a similarly aged low-[{alpha}/Fe] population. This observation may suggest that star formation or radial migration proceeds unevenly in the Galaxy.