The second catalog of high-energy gamma-ray observations from the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory includes data from Phase 1 (1991 April - 1992 November) and Phase 2 (1992 November - 1993 September) of the mission. In addition to including more data than the first EGRET catalog (1994ApJS...94..551F), this catalog uses an improved model of the diffuse galactic gamma radiation. The 129 sources in the catalog include one solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, 40 high-confidence identifications of active galactic nuclei, 11 AGN identifications with lower confidence, and 71 sources not yet identified with known objects. Also included a re approximate upper limits for gamma-ray sources at any point in the sky and information about sources listed in the first EGRET catalog but not appearing in this one. The main catalog (table 4) was revised slightly after the preprint was made.
This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
We present a catalog of sources detected above 50GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass 8 event-level analysis allows the detection and characterization of sources in the 50GeV-2TeV energy range. In this energy band, Fermi-LAT has detected 360 sources, which constitute the second catalog of hard Fermi-LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (~1.7' radius at 68% C. L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.
In this catalog, we present the results of a systematic study of 295 short gamma-ray bursts (GRBs) detected by Konus-Wind (KW) from 1994 to 2010. From the temporal and spectral analyses of the sample, we provide the burst durations, the spectral lags, the results of spectral fits with three model functions, the total energy fluences, and the peak energy fluxes of the bursts. We discuss evidence found for an additional power-law spectral component and the presence of extended emission in a fraction of the KW short GRBs. Finally, we consider the results obtained in the context of the Type I (merger-origin)/Type II (collapsar-origin) classifications.
We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters, and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E.E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs, and S-GRBs with E.E. in the catalog are 89%, 8%, and 2%, respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX, and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T90 and T50 durations peak at 70s and 30s, respectively.
The Second U.S. Naval Observatory CCD Astrograph Catalog (UCAC2)
Short Name:
ucac2
Date:
17 Jun 2006 18:44:05
Publisher:
Sternberg Astronomical Institute Virtual Observatory Project
Description:
The UCAC2 is the second release of the ongoing UCAC project, designed
to observe the entire sky for R magnitudes of about 7.5 to 16. The
observed positional errors are about 20 mas for the stars in the 10
to 14 magnitude range, and about 70 mas at the limiting magnitude
of R ~16. For up-to-date information on the project, see our web page
at http://ad.usno.navy.mil/ucac/ . This web page will also serve as
the location that the UCAC team will post addenda to the UCAC2 catalog.
The UCAC2 is a high density, highly accurate, astrometric catalog of
48,330,571 stars covering the sky from -90 to +40 degrees in declination
and going up to +52 degrees in some areas. The northern limit is a
function of right ascension. Proper motions and photometry are
provided for all stars. Positions and proper motions are on the
ICRS (International Celestial Reference System) and given at the epoch
J2000.0.
The UCAC2 has a number of major differences with respect to UCAC1.
These differences include:
- much larger sky coverage
- reduced systematic errors of CCD observations
- positions given at a standard epoch (J2000.0)
- the addition of several new catalogs for improved proper motions
- photometry in the J, H, and K_s bands from the 2MASS project
- data in binary format for direct access
- inclusion of software to aid users in quick access of the data
Additional details of the data are found in Sections 3, 4, and 5 of
this document.
The SEGUE K giant survey. II. Distances of 6036 stars
Short Name:
J/ApJ/784/170
Date:
21 Oct 2021
Publisher:
CDS
Description:
We present an online catalog of distance determinations for 6036 K giants, most of which are members of the Milky Way's stellar halo. Their medium-resolution spectra from the Sloan Digital Sky Survey/Sloan Extension for Galactic Understanding and Exploration are used to derive metallicities and rough gravity estimates, along with radial velocities. Distance moduli are derived from a comparison of each star's apparent magnitude with the absolute magnitude of empirically calibrated color-luminosity fiducials, at the observed (g-r)_0_ color and spectroscopic [Fe/H]. We employ a probabilistic approach that makes it straightforward to properly propagate the errors in metallicities, magnitudes, and colors into distance uncertainties. We also fold in prior information about the giant-branch luminosity function and the different metallicity distributions of the SEGUE K-giant targeting sub-categories. We show that the metallicity prior plays a small role in the distance estimates, but that neglecting the luminosity prior could lead to a systematic distance modulus bias of up to 0.25mag, compared to the case of using the luminosity prior. We find a median distance precision of 16%, with distance estimates most precise for the least metal-poor stars near the tip of the red giant branch. The precision and accuracy of our distance estimates are validated with observations of globular and open clusters. The stars in our catalog are up to 125kpc from the Galactic center, with 283 stars beyond 50kpc, forming the largest available spectroscopic sample of distant tracers in the Galactic halo.
We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.
The Serpens filament 13CO, C18O and C17O datacubes
Short Name:
J/A+A/646/A170
Date:
21 Oct 2021
Publisher:
CDS
Description:
The Serpens filament, a prominent elongated structure in a relatively nearby molecular cloud, is believed to be at an early evolutionary stage, so studying its physical and chemical properties can shed light on filament formation and early evolution. The main goal is to address the physical and chemical properties as well as dynamical state of the Serpens filament at a spatial resolution of ~0.07pc and a spectral resolution of ~0.1~km/s. We performed ^13^CO (1-0), C^18^O (1-0), C^17^O (1-0), ^13^CO (2-1), C^18^O (2-1), and C^17^O (2-1) imaging observations toward the Serpens filament with the IRAM-3 m and APEX telescopes. Widespread narrow ^13^CO (2-1) self-absorption is observed in this filament, causing the ^13^CO morphology to be different from the filamentary structure traced by C^18^O and C^17^O. Our excitation analysis suggests that the opacities of C^18^O transitions become higher than unity in most regions, and this analysis confirms the presence of widespread CO depletion. Further we show that the local velocity gradients have a tendency to be perpendicular to the filament's long axis in the outskirts and parallel to the large-scale magnetic field direction. The magnitudes of the local velocity gradients decrease toward the filament's crest. The observed velocity structure can be a result of gravity-driven accretion flows. The isochronic evolutionary track of the C^18^O freeze-out process indicates the filament is young with an age of <~2Myr. We propose that the Serpens filament is a newly-formed slightly-supercritical structure which appears to be actively accreting material from its ambient gas.
Stellar clusters are open windows to understand stellar evolution. Specifically, the change with time and the dependence on mass of different stellar properties. As such, they are our laboratories where different theories can be tested. We try to understand the origin of the connection between lithium depletion in F, G and K stars, rotation and activity, in particular in the Pleiades open cluster. We have collected all the relevant data in the literature, including information regarding rotation period, binarity and activity, and cross-matched with proper motions, multi-wavelength photometry and membership probability from the DANCe database. In order to avoid biases, only Pleiades single members with probabilities larger than 75% have been included in the discussion. Results. The analysis confirms that there is a strong link between activity, rotation and the lithium equivalent width excess, specially for the range Lum(bol)=0.5-0.2L_{sun}_ (about K2-K7 spectral types or 0.75-0.95M_{sun}_). It is not possible to disentangle these effects but we cannot exclude that the observed lithium overabundance is partially an observational effect due to enhanced activity, due to a large coverage by stellar spots induced by high rotation rates. Since a bona fide lithium enhancement is present in young, fast rotators, both activity and rotation should play a role in the lithium problem.