United States Naval Observatory, Flagstaff Station
Description:
USNO-B is an all-sky catalog that presents positions, proper motions, magnitudes in various optical passbands, and star/galaxy estimators for 1,042,618,261 objects derived from 3,643,201,733 separate observations. The data were obtained from scans of 7435 Schmidt plates taken for the various sky surveys during the last 50 years. USNO-B1.0 is believed to provide all-sky coverage, completeness down to V=21, 0.2" astrometric accuracy at J2000, 0.3 mag photometric accuracy in up to five colors, and 85% accuracy for distinguishing stars from nonstellar objects. A brief discussion of various issues is given here, but the actual data are available from the US Naval Observatory Web site and others.
Accurate positional measurements of planets and satellites are used to improve their orbits, our knowledge of their dynamics and to infer the accuracy of the planet and satellite ephemerides. In the framework of the European FP7 ESPaCE program, we provide the positions of Mars, Phobos, and Deimos taken with the U.S. Naval Observatory 61-inch astrometric reflector and 26-inch refractor from 1967 to 1997. 425 astrophotographic plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process which includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, DEC) positions.
The U.S. Naval Observatory CCD trigonometric parallax program is described in detail, including the instrumentation employed, observing procedures followed, and reduction procedures applied. Astrometric results are presented for 72 stars ranging in apparent brightness from V=15.16 to 19.58. Photometry (V and V-I on the Kron-Cousins system) is presented for the parallax stars and for all 426 individual reference stars employed in the astrometric solutions. Corrections for differential color refraction, calibrated to the observed V-I colors, have been applied to all astrometric measures. The mean errors in the relative parallaxes range from +/-0.0005" to +/-0.0027" with a median value of +/-0.0010". Seventeen of the 23 stars with V_tan_>200km/s form a well-delineated sequence of extreme subdwarfs covering 11.5<M_V_<14.5 in the M_V_ vs V-I diagram. The transformation to the M_bol_ vs log T_eff_ plane is presented and the results are compared with various model interior computations. Within the limitations due to the uncertain T_eff_ scale for cool dwarfs and subdwarfs, the coolest members of the extreme subdwarf sequence appear to be near the hydrogen-burning minimum mass limit for stars with metallicities of [M/H]~-2.
Trigonometric parallaxes, relative proper motions, and photometry are presented for 122 stars in 111 systems. Of these stars, 70 are brighter than V = 10.0.
Accurate positional measurements of planets and satellites are used to improve our knowledge of both their orbits and their dynamics and to infer the accuracy of the planet and satellite ephemerides. In the framework of the European FP7 ESPaCE program, we provide the positions of Saturn and its major satellites taken with the U.S. Naval Observatory 26-inch refractor from 1974 to 1998. 526 astrophotographic plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process that includes image, instrumental, and spherical corrections using the UCAC4 catalog to provide the most accurate equatorial (RA, DEC) positions.
We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more than 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars), we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allow us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and 463km/s fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by lognormal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.
We have determined column densities of H I and/or H_2_ for sight lines in the Magellanic Clouds from archival Hubble Space Telescope and Far-Ultraviolet Spectroscopic Explorer spectra of H I Ly{alpha} and H_2_Lyman-band absorption. Together with some similar data from the literature, we now have absorption-based N(H I) and/or N(H_2_) for 285 Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sight lines (114 with a detection or limit for both species) - enabling more extensive, direct, and accurate determinations of molecular fractions, gas-to-dust ratios, and elemental depletions in these two nearby, low-metallicity galaxies. For sight lines where the N(H I) estimated from 21 cm emission is significantly higher than the value derived from Ly{alpha} absorption (presumably due to emission from gas beyond the target stars), integration of the 21 cm profile only over the velocity range seen in Na I or H_2_absorption generally yields much better agreement. Conversely, N(21 cm) can be lower than N(Ly{alpha}) by factors of 2-3 in some LMC sight lines - suggestive of small-scale structure within the 21 cm beam(s) and/or some saturation in the emission. The mean gas-to-dust ratios obtained from N(H_tot_)/E(B-V) are larger than in our Galaxy, by factors of 2.8-2.9 in the LMC and 4.1-5.2 in the SMC - i.e., factors similar to the differences in metallicity. The N(H_2_)/E(B-V) ratios are more similar in the three galaxies, but with considerable scatter within each galaxy. These data may be used to test models of the atomic-to-molecular transition at low metallicities and predictions of N(H_2_) based on comparisons of 21 cm emission and the IR emission from dust.
This work presents the main ultraviolet (UV) and far-infrared (FIR) properties of two samples of nearby galaxies selected from the GALEX ({lambda}=2315{AA}, hereafter NUV) and IRAS ({lambda}=60{mu}m) surveys, respectively. They are built in order to obtain detection at both wavelengths for most of the galaxies. Star formation rate (SFR) estimators based on the UV and FIR emissions are compared. Systematic differences are found between the SFR estimators for individual galaxies based on the NUV fluxes corrected for dust attenuation and on the total IR luminosity.
The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-{beta}) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter in the IRX-UV relation.
Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-{beta} relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 {AA} bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 {AA} bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.