- ID:
- ivo://nasa.heasarc/vlacos324m
- Title:
- VLA-COSMOS Survey 324-MHz Continuum Source Catalog
- Short Name:
- VLACOS324M
- Date:
- 01 Nov 2024
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a source catalog based on 90-cm (324-MHz) Very Large Array (VLA) imaging of the COSMOS field, comprising a circular area of 3.14 square degrees centered on 10<sup>h</sup> 00<sup>m</sup> 28.6<sup>s</sup>, _02<sup>o</sup> 12' 21" (J2000.0 RA and Dec). The image from the merger of 3 nights of observations using all 27 VLA antennas had an effective total integration time of ~ 12 hours, an 8.0 arcsecond x 6.0 arcsecond angular resolution, and an average rms of 0.5 mJy beam<sup>-1</sup>. The extracted catalog contains 182 sources (down to 5.5 sigma), 30 of which are multi-component sources. Using Monte Carlo artificial source simulations, the authors derive the completeness of the catalog, and show that their 90-cm source counts agree very well with those from previous studies. In their paper, the authors use X-ray, NUV-NIR and radio COSMOS data to investigate the population mix of this 90-cm radio sample, and find that the sample is dominated by active galactic nuclei. The average 90-20 cm spectral index (S_nu_~ nu<sup>alpha</sup>, where S<sub>nu</sub> is the flux density at frequency nu and alpha the spectral index) of the 90-cm selected sources is -0.70, with an interquartile range from -0.90 to -0.53. Only a few ultra-steep-spectrum sources are present in this sample, consistent with results in the literature for similar fields. These data do not show clear steepening of the spectral index with redshift. Nevertheless, this sample suggests that sources with spectral indices steeper than -1 all lie at z >~ 1, in agreement with the idea that ultra-steep-spectrum radio sources may trace intermediate-redshift galaxies (z >~ 1). Using both the signal and rms maps (see Figs. 1 and 2 in the reference paper) as input data, the authors ran the AIPS task SAD to obtain a catalog of candidate components above a given local signal-to-noise ratio (S/N) threshold. The task SAD was run four times with search S/N levels of 10, 8, 6 and 5, using the resulting residual image each time. They recovered all the radio components with a local S/N > 5.00. Subsequently, all the selected components were visually inspected, in order to check their reliability, especially for the components near strong side-lobes. After a careful analysis, a S/N threshold of 5.50 was adopted as the best compromise between a deep and a reliable catalog. The procedure yielded a total of 246 components with a local S/N > 5.50. More than one component, identified in the 90-cm map sometimes belongs to a single radio source (e.g. large radio galaxies consist of multiple components). Using the 90-cm COSMOS radio map, the authors combined the various components into single sources based on visual inspection. The final catalog (contained in this HEASARC table) lists 182 radio sources, 30 of which have been classified as multiple, i.e. they are better described by more than a single component. Moreover, in order to ensure a more precise classification, all sources identified as multi-component sources have been also double-checked using the 20-cm radio map. The authors found that all the 26 multiple 90-cm radio sources within the 20-cm map have 20-cm counterpart sources already classified as multiple. The authors have made use of the VLA-COSMOS Large and Deep Projects over 2 square degrees, reaching down to an rms of ~15 µJy beam<sup>1</sup> ^ at 1.4 GHz and 1.5 arcsec resolution (Schinnerer et al. 2007, ApJS, 172, 46: the VLACOSMOS table in the HEASARC database). The 90-cm COSMOS radio catalog has, however, been extracted from a larger region of 3.14 square degrees (see Fig. 1 and Section 3.1 of the reference paper). This implies that a certain number of 90-cm sources (48) lie outside the area of the 20-cm COSMOS map used to select the radio catalog. Thus, to identify the 20-cm counterparts of the 90-cm radio sources, the authors used the joint VLA-COSMOS catalog (Schinnerer et al. 2010, ApJS, 188, 384: the VLACOSMJSC table in the HEASARC database) for the 134 sources within the 20-cm VLA-COSMOS area and the VLA- FIRST survey (White et al. 1997, ApJ, 475, 479: the FIRST table in the HEASARC database) for the remaining 48 sources. The 90-cm sources were cross-matched with the 20-cm VLA-COSMOS sources using a search radius of 2.5 arcseconds, while the cross-match with the VLA-FIRST sources has been done using a search radius of 4 arcseconds in order to take into account the larger synthesized beam of the VLA-FIRST survey of ~5 arcseconds. Finally, all the 90 cm - 20 cm associations were visually inspected in order to ensure also the association of the multiple 90-cm radio sources for which the value of the search radius used during the cross-match could be too restrictive. In summary, out of the total of 182 sources in the 90-cm catalog, 168 have counterparts at 20 cm. This table was created by the HEASARC in October 2014 based on an electronic version of Table 1 from the reference paper which was obtained from the COSMOS web site at IRSA, specifically the file vla-cosmos_327_sources_published_version.tbl at <a href="http://irsa.ipac.caltech.edu/data/COSMOS/tables/vla/">http://irsa.ipac.caltech.edu/data/COSMOS/tables/vla/</a>. This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/622/A13
- Title:
- VLA double-double radio galaxy candidates images
- Short Name:
- J/A+A/622/A13
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left behind by a past episode of active galactic nuclei (AGN) activity, and meanwhile, the radio jets have restarted in a new episode. The knowledge of what causes the jets to switch off and restart is crucial to our understanding of galaxy evolution, while it is important to know if DDRGs form a host galaxy dichotomy relative to RLAGN. The sensitivity and field of view of LOFAR enables the observation of DDRGs on a population basis rather than single-source observations. Using statistical comparisons with a control sample of RLAGN, we may obtain insights into the nature of DDRGs in the context of their host galaxies, where physical differences in their hosts compared to RLAGN as a population may allow us to infer the conditions that drive restarting jets. We utilised the LOFAR Two-Metre Sky Survey (LoTSS) DR1, using a visual identification method to compile a sample of morphologically selected candidate DDRGs, showing two pairs of radio lobes. To confirm the restarted nature in each of the candidate sources, we obtained follow-up observations with the Karl. G. Jansky Very Large Array (VLA) at higher resolution to observe the inner lobes or restarted jets, the confirmation of which created a robust sample of 33 DDRGs.We created a comparison sample of 777 RLAGN, matching the luminosity distribution of the DDRG sample, and compared the optical and infrared magnitudes and colours of their host galaxies. We find that there is no statistically significant difference in the brightness of the host galaxies between double-doubles and single-cycle RLAGN. The DDRG and RLAGN samples also have similar distributions in WISE mid-infrared colours, indicating similar ages of stellar populations and dust levels in the hosts of DDRGs. We conclude that DDRGs and 'normal' RLAGN are hosted by galaxies of the same type, and that DDRG activity is simply a normal part of the life cycle of RLAGN. Restarted jets, particularly for the class of low-excitation radio galaxies, rather than being a product of a particular event in the life of a host galaxy, must instead be caused by smaller scale changes, such as in the accretion system surrounding the black hole.
- ID:
- ivo://nasa.heasarc/vlaen20cm
- Title:
- VLA ELAIS N1, N2, N3 Fields 20-cm Source Catalog
- Short Name:
- VLAEN20CM
- Date:
- 01 Nov 2024
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors have used the Very Large Array (VLA) in C configuration to carry out a sensitive 20-cm radio survey of regions of the sky that have been surveyed in the far-infrared (FIR) over the wavelength range 5 -200 microns (µm) with ISO (Infrared Space Observatory) as part of the European Large-Area ISO Survey (ELAIS). As usual in surveys based on a relatively small number of overlapping VLA pointings, the flux limit varies over the area surveyed: from a 5-sigma limit of 0.135 mJy over an area of 0.12 deg<sup>2</sup> to 1.15 mJy or better over the whole region covered of 4.22 deg<sup>2</sup>. In their paper, the authors present the complete radio catalog of 867 sources, 428 of which form a complete sample in the flux range 0.2 - 1.0 mJy. These regions of the sky have previously been surveyed to shallower flux limits at 20 cm with the VLA as part of the VLA D-configuration NVSS (full width at half-maximum, FWHM = 45arcseconds) and VLA-B configuration FIRST (FWHM = 5 arcseconds) surveys. This whole survey has a nominal 5-sigma flux limit a factor of 2 below that of the NVSS; 3.4 deg<sup>2</sup> of the survey reaches the nominal flux limit of the FIRST survey and 1.5 deg<sup>2</sup> reaches 0.25 mJy, a factor of 4 below the nominal FIRST survey limit. In addition, this survey is at a resolution intermediate between the two surveys and thus is well suited for a comparison of the reliability and resolution-dependent surface brightness effects that affect interferometric radio surveys. The authors have carried out a detailed comparison of their survey and these two independent surveys in order to assess the reliability and completeness of each. Considering the whole sample, they found that to the 5-sigma nominal limits of 2.3 and 1.0 mJy, respectively, the NVSS and FIRST surveys have a completeness of 96<sup>+2</sup><sub>-3</sub> and 89<sup>+2</sup><sub>-3</sub> % and a reliability of 99<sup>+1</sup><sub>-2</sub> and 94<sup>+2</sup><sub>-2</sub> %. The radio observations were obtained of three ISO ELAIS survey regions in the Northern celestial hemisphere (N1 1610+5430, N2 1636+4115 and N3 1429+3306) (see Table 1 of the reference paper for the details of the fields and the individual pointings). The observations are made with the Very Large Array (VLA) radio telescope at 1.4 GHz (20 cm) in the VLA C configuration (maximum baseline 3.4 km) with an angular resolution (FWHM) of ~15 arcseconds. The aim of these VLA observations was to obtain uniform coverage of the ELAIS regions with an rms noise limit of ~50 microJansky (µJy). This table contains the 921 components of 867 total sources detected at a level of >= 5 sigma (44 of which are multiple component sources as defined in Section 4.3 of the reference paper) over a total area of 4.222 deg<sup>2</sup>. There are also entries describing the properties of the total sources for the 44 multi-component sources (for which the positions have been computed as the flux-weighted average positions of their components), and thus this catalog contains 965 (921 + 44) entries. To filter out the latter, component_id values != 'T' should be selected when searching this table. This table was originally ingested by the HEASARC in August 2012, based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/302/222">CDS Catalog J/MNRAS/302/222</a> file table3.dat. It was last updated in September 2013 to remove a duplicate entry for the source ELAISR J142743+331323. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vlaecdfscls
- Title:
- VLA Extended-Chandra Deep Field-South Classification Catalog
- Short Name:
- VLAECDFSCLS
- Date:
- 01 Nov 2024
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The sub-mJy radio population is a mixture of active systems, that is star-forming galaxies (SFGs) and active galactic nuclei (AGNs). In their paper, the authors study a sample of 883 radio sources detected at 1.4 GHz in a deep Very Large Array (VLA) survey of the Extended Chandra Deep Field-South (E-CDF-S) that reaches a best rms sensitivity of 6 microJansky (µJy). The authors have used a simple scheme to disentangle SFGs, radio-quiet (RQ), and radio-loud (RL) AGNs based on the combination of radio data with Chandra X-ray data and mid-infrared observations from Spitzer. They find that at flux densities between about 30 and 100 uJy, the radio population is dominated by SFGs (~60%) and that RQ AGNs become increasingly important over RL ones below 100 uJy. In the paper, the authors also compare the host galaxy properties of the three classes in terms of morphology, optical colors and stellar masses. Their results show that both SFG and RQ AGN host galaxies have blue colors and late-type morphology while RL AGNs tend to be hosted by massive red galaxies with early-type morphology. This supports the hypothesis that radio emission in SFGs and RQ AGNs mainly comes from the same physical process: star formation in the host galaxy. This table was created by the HEASARC in January 2014 based on the machine-readable version of Table 1 from the reference paper which was obtained from the MNRAS web site. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vlaecdfs1p4
- Title:
- VLA Extended-Chandra Deep Field-South 1.4-GHz Source Catalog
- Short Name:
- VLAECDFS1P4
- Date:
- 01 Nov 2024
- Publisher:
- NASA/GSFC HEASARC
- Description:
- Deep radio observations at 1.4 GHz for the Extended Chandra Deep Field South were performed in 2007 June through September and presented in a first data release (Miller et al. 2008, ApJS, 179, 114). The survey was made using six separate pointings of the Very Large Array with over 40 hr of observation per pointing. In the current study, the authors improve on the data reduction to produce a second data release (DR2) mosaic image. This DR2 image covers an area of about a third of a square degree, reaches a best rms sensitivity of 6 µJy (µJy), and has a typical sensitivity of 7.4 uJy per 2.8" by 1.6" beam. The authors also present a more comprehensive catalog, including sources down to peak flux densities of five or more times the local rms noise, along with information on source sizes and relevant pointing data. In their paper, they discuss in some detail the consideration of whether sources are resolved under the complication of a radio image created as a mosaic of separate pointings, each suffering some degree of bandwidth smearing, and the accurate evaluation of the flux densities of such sources. Finally, the radio morphologies and optical/near-IR counterpart identifications are used to identify 17 likely multiple-component sources so as to arrive at a catalog of 883 radio sources (and also 49 individual components of the 17 multi-component sources), which is roughly double the number of sources contained in the first data release. In order to cover the full E-CDF-S area at near-uniform sensitivity, the authors pointed the VLA at six separate coordinate locations arranged in a hexagonal grid around the adopted center of the CDF-S, viz. RA, Dec (J2000) 03<sup>h</sup> 32<sup>m</sup> 28.00<sup>s</sup>, -27<sup>o</sup> 48' 30.0". The observations were spread over many days on account of the low declination of the field and typically amounted to 5 hr of time per calendar date. The details of the individual pointings are: <pre> Pointing ID R.A. (J2000) DE. (J2000) rms sensitivity for final image ECDFS 1 03:33:22.25 -27:48:30.0 10.5 uJy ECDFS 2 03:32:55.12 -27:38:03.0 9.4 uJy ECDFS 3 03:32:00.88 -27:38:03.0 9.7 uJy ECDFS 4 03:31:33.75 -27:48:30.0 9.5 uJy ECDFS 5 03:32:00.88 -27:58:57.0 10.0 uJy ECDFS 6 03:32:55.12 -27:58:57.0 9.3 uJy </pre> The images corresponding to the six individual pointings were combined to form the final mosaic image (shown in Figure 1 of the reference paper). This HEASARC table contains the catalog of 883 radio sources (Table 3 in the reference paper) and also the catalog of 49 individual components of the 17 multi-component sources (Table 4 in the reference paper), so that there are a total of 932 entries in the present table. To allow users to easily distinguish these types of entry, the HEASARC created a parameter type_flag which is set to 'S' for the 883 source entries and to 'C' for the 49 component entries. The HEASARC created names for the sources following the standard CDS and IAU recommendations for position-based names and using the prefix of '[MBF2013]' for Miller, Bonzini, Fomalont (2013), the first 3 authors and the date of publication of the reference paper. For the components, we have used the names based on the positions of the parent sources and the suffixes 'A', 'B', etc, in order of increasing J2000.0 RA. Thus, for the multi-component source [MBF2013] J033115.0-275518 which has 3 components, there are 4 entries in this table, one for the entire source, and one for each component, e.g.: <pre> Name | type_flag | RA (J2000.0) Dec (J2000.0) [MBF2013] J033115.0-275518 | S | 03 31 15.04 | -27 55 18.8 [MBF2013] J033115.0-275518 A| C | 03 31 13.99 | -27 55 19.9 [MBF2013] J033115.0-275518 B| C | 03 31 15.06 | -27 55 18.9 [MBF2013] J033115.0-275518 C| C | 03 31 17.05 | -27 55 15.2 </pre> The 17 sources thought to consist of multiple components associated with a single host object are each listed with a single aggregate integrated flux density. Gaussian fits to the individual components associated with these sources are separately listed for their components This table was created by the HEASARC in May 2013 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/205/13">CDS Catalog J/ApJS/205/13</a> files table3.dat and table4.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/vlaecdfsoi
- Title:
- VLA Extended-Chandra Deep Field-South 1.4-GHz Sources Opt/IR Counterparts
- Short Name:
- VLAECDFSOI
- Date:
- 01 Nov 2024
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a sample of 883 sources detected in a deep Very Large Array (VLA) survey at 1.4 GHz in the Extended-Chandra Deep Field South (E-CDFS). The reference paper focuses on the identification of their optical and infrared (IR) counterparts. The authors use a likelihood-ratio technique that is particularly useful when dealing with deep optical images to minimize the number of spurious associations. They find a reliable counterpart for 95% of their radio sources. Most of the counterparts (74%) are detected at optical wavelengths, but there is a significant fraction (21%) that are only detectable in the IR. Combining newly acquired optical spectra with data from the literature, the authors are able to assign a redshift to 81% of the identified radio sources (37% spectroscopic). They also investigate the X-ray properties of the radio sources using the Chandra 4 Ms and 250 ks observations. In particular, the authors use a stacking technique to derive the average properties of radio objects undetected in the Chandra images. The results of their analysis are collected in this new catalog containing the position of the optical/IR counterpart, the redshift information, and the X-ray fluxes. It is the deepest multi-wavelength catalog of radio sources, which will be used for future study of this galaxy population. The E-CDFS was observed at 1.4 GHz with the VLA between 2007 June and September (Miller et al. 2008, ApJS, 179, 114). The mosaic image covered an area of about 34 by 34 arcminutes with near-uniform sensitivity. The typical rms is 7.4 µJy for a 2.8 by 1.6 arcseconds beam. The second data release (N. Miller et al. 2012, in preparation) provides a new source catalog with a 5-sigma point-source detection limit, for a total of 883 sources. The median value of the distribution is 58.5 µJy and the median signal-to-noise ratio (S/N) is 7.6. The authors note that ~ 90% of the sample has a flux density below 1 mJy, a regime where radio-quiet AGNs and star-forming galaxies (SFGs) become the dominant populations This table was created by the HEASARC in November 2012 based on the files table3.dat and table5.dat which were obtained from the ApJS web site. This is a service provided by NASA HEASARC .
17037. VLA FIRST ConeSearch
- ID:
- ivo://archive.stsci.edu/catalogs/FIRST
- Title:
- VLA FIRST ConeSearch
- Short Name:
- VLAFIRST CS
- Date:
- 23 Jul 2020 20:20:25
- Publisher:
- Space Telescope Science Institute Archive
- Description:
- All MAST catalog holdings are available via a ConeSearch endpoint. The Very Large Array (VLA) FIRST -- Faint Images of the Radio Sky at Twenty-cm -- is a project designed to produce the radio equivalent of the Palomar Observatory Sky Survey over 10,000 square degrees of the North and South Galactic Caps. Using the NRAO Very Large Array (VLA) and an automated mapping pipeline, we produce images with 1.8" pixels, a typical rms of 0.15 mJy, and a resolution of 5". At the 1 mJy source detection threshold, there are ~90 sources per square degree, ~35% of which have resolved structure on scales from 2-30". 30% of the sources have counterparts in the Sloan Digital Sky Survey. The VLA FIRST catalog at MAST was published December 17, 2014. More information is available at http://sundog.stsci.edu All available missions are listed at http://archive.stsci.edu/vo/mast_services.html.
- ID:
- ivo://CDS.VizieR/J/ApJ/732/45
- Title:
- VLA fluxes for AT20G radio galaxies
- Short Name:
- J/ApJ/732/45
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present flux densities and polarization percentages of 159 radio galaxies based on nearly simultaneous Very Large Array observations at four frequencies, 4.86, 8.46, 22.46, and 43.34GHz. This sample is selected from the high-frequency Australia Telescope 20GHz (AT20G) survey and consists of all sources with flux density S_20GHz_>40mJy in an equatorial field of the Atacama Cosmology Telescope (ACT) survey. For a subset of 25 of these sources, we used the Green Bank Telescope (GBT) to obtain 90GHz data. We find that, as expected, this sample consists of flatter spectrum and more compact or point-like sources than low-frequency-selected samples. In the K band, variability is typically <~20%, although there are exceptions. The higher frequency data are well suited to the detection of extreme gigahertz peak spectrum sources. The inclusion of the 43GHz data causes the relative fraction of inverted spectrum sources to go down and of peaked spectrum sources to go up when compared with the AT20G survey results. The trend largely continues with the inclusion of the 90GHz data, although ~10% of the sources with GBT data show a spectral upturn from 43GHz to 90GHz. The measured polarization fractions are typically <5%, although in some cases they are measured to be up to ~20%. For sources with detected polarized flux in all four bands, about 40% of the sample, the polarization fractions typically increase with frequency. This trend is stronger for steeper spectrum sources as well as for the lower flux density sources.
- ID:
- ivo://nasa.heasarc/vlanep
- Title:
- VLA 1.5-GHz North Ecliptic Pole Survey
- Short Name:
- VLA
- Date:
- 01 Nov 2024
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The VLANEP database contains the VLA-NEP survey of 29.3 square degrees around the North Ecliptic Pole mapped with the VLA at 20 cm (1.5 GHz) in the `C-configuration`. The database table contains 2435 radio sources with flux densities ranging from 0.3 to 1000 mJy, including over 200 fainter than 1 mJy. Source positions have been corrected for instrumental effects, and most positions are accurate to less than 2 arcseconds. The sensitivity varies from field to field, with the 1 sigma level being approximately 0.06 mJy at the center of the inner fields and 0.12 mJy at the center of the outer fields. Sensitivity drops with distance from the center of each field due to the primary beam response of the VLA antennas and interferometer effects. Source flux densities have been corrected for these effects. The spatial resolution varies from field to field, with the typical HPBW being 20 arcseconds. Source positions have been corrected for instrumental effects, and most positions are accurate to less than 2 arcseconds. Approximately 6% of the sources were found to be extended with angular sizes greater than 30 arcseconds. This catalog was recreated at the HEASARC in February 2001 (replacing a previous version: some parameters were renamed, and the source names were changed to the format recommended for VLA-NEP sources in the Dictionary of Nomenclature of Celestial Objects maintained at the CDS) based on CDS/ADC Catalog J/ApJS/93/145/table2. This is a service provided by NASA HEASARC .
- ID:
- ivo://CDS.VizieR/J/ApJS/202/2
- Title:
- VLA 1.4GHz observations of A370 and A2390
- Short Name:
- J/ApJS/202/2
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 1.4GHz catalogs for the cluster fields A370 and A2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. The A370 image covers an area of 40'x40' with a synthesized beam of ~1.7" and a noise level of ~5.7uJy near the field center. The A2390 image covers an area of 34'x34' with a synthesized beam of ~1.4" and a noise level of ~5.6uJy near the field center. We catalog 200 redshifts for the A370 field. We construct differential number counts for the central regions (radius <16') of both clusters. We find that the faint (S_1.4GHz_<3mJy) counts of A370 are roughly consistent with the highest blank field number counts, while the faint number counts of A2390 are roughly consistent with the lowest blank field number counts. Our analyses indicate that the number counts are primarily from field radio galaxies. We suggest that the disagreement of our number counts can be largely attributed to cosmic variance.