- ID:
- ivo://CDS.VizieR/J/A+A/489/1271
- Title:
- CO and OH abundances of 23 K-M giants
- Short Name:
- J/A+A/489/1271
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Based on the high resolution infrared spectra observed with the Fourier Transform Spectrometer (FTS) at the 4m telescope of the Kitt Peak National Observatory (KPNO), ro-vibrational lines of ^12^C^16^O, ^13^C^16^O, ^12^C^17^O, and ^16^OH were measured. Some details of the observed spectra including the resolution, S/N ratio, and data of observation are given in table2. The spectroscopic and equivalent width data are given in table3 for 23 red giant stars. The resulting data are used to investigate the nature of the infrared spectra of K-M giant stars. It is found that only the weak lines (log(W/nu)<-4.75) carry the information on the photosphere and hence can be used to extract the nature of the photosphere such as the stellar abundances. The intermediate-strength (-4.75<log(W/nu)<-4.40) as well as the strong (log(W/nu)>-4.4) lines are badly disturbed by the lines of non-photospheric origin. In other words, most lines dominating the infrared spectra, except for the weak lines, are actually hybrid of at least two different kinds of lines originating in the photosphere and in an extra molecular layers outside of photosphere. The nature of the extra layers is not known well, but it may be related to the molecular envelope producing H_2_O lines, not only in late M but also in early M giants as well. Also, the intermediate-strength lines include those with LEP as high as 2eV and hence the extra molecular layer should be quite warm. For the reason outlined above, we determine C, O, and their isotopic abundances using only the weak lines, but we listed the measured data not only of the weak lines but also of the stronger lines as well in table3, with the hope that these data can be of some use to clarify the nature of the warm extra molecular layers.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/236/49
- Title:
- CO and 850um obs. of Planck Galactic cold clumps
- Short Name:
- J/ApJS/236/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In order to understand the initial conditions and early evolution of star formation in a wide range of Galactic environments, we carried out an investigation of 64 Planck Galactic cold clumps (PGCCs) in the second quadrant of the Milky Way. Using the ^13^CO and C^18^O J=1-0 lines and 850{mu}m continuum observations, we investigated cloud fragmentation and evolution associated with star formation. We extracted 468 clumps and 117 cores from the ^13^CO line and 850{mu}m continuum maps, respectively. We made use of the Bayesian distance calculator and derived the distances of all 64 PGCCs. We found that in general, the mass-size plane follows a relation of m~r^1.67^. At a given scale, the masses of our objects are around 1/10 of that of typical Galactic massive star-forming regions. Analysis of the clump and core masses, virial parameters, densities, and mass-size relation suggests that the PGCCs in our sample have a low core formation efficiency (~3.0%), and most PGCCs are likely low-mass star-forming candidates. Statistical study indicates that the 850{mu}m cores are more turbulent, more optically thick, and denser than the ^13^CO clumps for star formation candidates, suggesting that the 850{mu}m cores are likely more appropriate future star formation candidates than the ^13^CO clumps.
- ID:
- ivo://CDS.VizieR/J/MNRAS/454/3816
- Title:
- Cobalt emission in nebular phase spectra
- Short Name:
- J/MNRAS/454/3816
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of ^56^Ni to ^56^Co at early times, and the decay of ^56^Co to ^56^Fe from ~60 d after explosion. We examine the evolution of the [CoIII] {lambda}5893 emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of ^56^Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in ^56^Co decay and long-term stability of the ionization state of the nebula. We compile SN Ia nebular spectra from the literature and present 21 new late-phase spectra of 7 SNe Ia, including SN 2014J. From these we measure the flux in the [CoIII] {lambda}5893 line and remove its well-behaved time dependence to infer the initial mass of ^56^Ni (M_Ni_) produced in the explosion. We then examine ^56^Ni yields for different SN Ia ejected masses (M_ej_ - calculated using the relation between light-curve width and ejected mass) and find that the ^56^Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s~0.7-0.9), M_Ni_ is clustered near M_Ni_~0.4M_{sun}_ and shows a shallow increase as M_ej_ increases from ~1 to 1.4M_{sun}_; at high stretch, M_ej_ clusters at the Chandrasekhar mass (1.4M_{sun}_) while M_Ni_ spans a broad range from 0.6 to 1.2M_{sun}_. This could constitute evidence for two distinct SN Ia explosion mechanisms.
3034. COBE DIRBE IR photometry
- ID:
- ivo://CDS.VizieR/J/ApJ/500/554
- Title:
- COBE DIRBE IR photometry
- Short Name:
- J/ApJ/500/554
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A comparison of the COBE Diffuse Infrared Background Experiment (DIRBE) all-sky survey with the locations of known galaxies in the IRAS Catalog of Extragalactic Objects and the Center for Astrophysics Catalog of Galaxies led to the detection of as many as 57 galaxies. In this paper, we present the photometric data for these galaxies and an analysis of the seven galaxies that were detected at {lambda}>100{mu}m. Estimates of the ratio of the mass of the cold dust (CD) component detected at T_d_=20-30K to a very cold dust (VCD) component with T_d_~10-15K suggest that between 2%-100% of the cirrus-like CD mass can also exist in many of these galaxies as VCD. In one galaxy, M33, the DIRBE photometry at 240{mu}m suggests as much as 26 times as much VCD may be present as compared to the cirrus-like component. Further submillimeter measurements of this galaxy are required to verify such a large population of VCD. We also present 10 galaxies that were detected in the sky region not previously surveyed by IRAS and that can be used to construct a flux-limited all-sky catalog of galaxies brighter than 1000Jy with a modest completeness limit of about 65%.
- ID:
- ivo://CDS.VizieR/J/ApJS/154/673
- Title:
- COBE DIRBE Point Source Catalog
- Short Name:
- J/ApJS/154/673
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the COBE DIRBE Point Source Catalog, an all-sky catalog containing infrared photometry in 10 bands from 1.25 microns to 240 microns for 11788 of the brightest near and mid-infrared point sources in the sky. Since DIRBE had excellent temporal coverage (100-1900 independent measurements per object during the 10 month cryogenic mission), the Catalog also contains information about variability at each wavelength, including amplitudes of variation observed during the mission. Since the DIRBE spatial resolution is relatively poor (0.7{deg}), we have carefully investigated the question of confusion, and have flagged sources with infrared-bright companions within the DIRBE beam. In addition, we filtered the DIRBE light curves for data points affected by companions outside of the main DIRBE beam but within the `sky' portion of the scan. At high Galactic latitudes (|b|>5{deg}), the Catalog contains essentially all of the unconfused sources with flux densities greater than 90, 60, 60, 50, 90, and 165 Jy at 1.25, 2.2, 3.5, 4.9, 12, and 25 microns, respectively, corresponding to magnitude limits of approximately 3.1, 2.6, 1.7, 1.3, -1.3, and -3.5. At longer wavelengths and in the Galactic Plane, the completeness is less certain because of the large DIRBE beam and possible contributions from extended emission. The Catalog also contains the names of the sources in other catalogs, their spectral types, variability types, and whether or not the sources are known OH/IR stars. We discuss a few remarkable objects in the Catalog.
- ID:
- ivo://nasa.heasarc/dirbepsc
- Title:
- COBE DIRBE Point Source Catalog
- Short Name:
- DIRBEPSC
- Date:
- 28 Feb 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the Cosmic Background Explorer (COBE) Diffuse Infrared Background Experiment (DIRBE) Point Source Catalog, an all-sky catalog containing infrared photometry in 10 bands from 1.25 microns to 240 microns for 11,788 of the brightest near and mid-infrared point sources in the sky. Since DIRBE had excellent temporal coverage (100-1900 independent measurements per object during the 10 month cryogenic mission in 1989 to 1990), the catalog also contains information about variability at each wavelength, including amplitudes of variation observed during the mission. Since the DIRBE spatial resolution is relatively poor (0.7 degrees), the authors carefully investigated the question of confusion, and flagged sources with infrared-bright companions within the DIRBE beam. In addition, they filtered the DIRBE light curves for data points affected by companions outside of the main DIRBE beam but within the `sky' portion of the scan. At high Galactic latitudes (|b| > 5 degrees), the catalog contains essentially all of the unconfused sources with flux densities greater than 90, 60, 60, 50, 90, and 165 Jy at 1.25, 2.2, 3.5, 4.9, 12, and 25 microns, respectively, corresponding to magnitude limits of approximately 3.1, 2.6, 1.7, 1.3, -1.3, and -3.5. At longer wavelengths and in the Galactic Plane, the completeness is less certain because of the large DIRBE beam and possible contributions from extended emission. For each source, for comparison, the names of the sources in other catalogs, their spectral types, variability types, IRAS and 2MASS photometry, SIMBAD spectral types and published variability types, and whether or not the sources are known OH/IR stars are also included. Unlike the IRAS and 2MASS Catalogs, the DIRBE Point Source Catalog was not constructed by searching the DIRBE database with a point source template and extracting sources based on S/N and confirmation criteria. The DIRBE Catalog was constructed using a target sample list obtained from other infrared catalogs. Since DIRBE is much less sensitive per scan than IRAS or 2MASS, essentially all of the point sources with high S/N light curves in the DIRBE database are already contained in IRAS, 2MASS, and/or MSX. Thus, for simplicity, the authors used these previous catalogs to select a sample for the DIRBE Point Source Catalog. Their initial sample included a total of 21,335 sources; the final catalog contains 11,788 sources. The initial sample was selected from the IRAS Point Source Catalog (1988), the 2MASS Point Source Catalog (Cutri 2003), and/or the MSX Point Source Catalog Version 1.2 (Egan et al. 1999, A&A, 349, 236) that satisfied at least one of the following criteria: (a) 2MASS J magnitude <= 4.51 (F<sub>1.25</sub> >= 25 Jy), (b) 2MASS K magnitude <= 3.81 (F<sub>2.2</sub> >= 20 Jy), (c) IRAS or MSX F<sub>12</sub> >= 15 Jy, or (d) IRAS or MSX F<sub>25</sub> >= 27.5 Jy. The 1.25 and 2.2 micron limits are equal to the average 1-sigma sensitivity per scan in the raw DIRBE light curves of Smith et al. (2002, AJ, 123, 948), while the 12 and 25 micron limits are 0.5 times the average noise levels per scan in that study. These low limits were selected in order to avoid missing variable stars that may have been faint during the 2MASS, IRAS, or MSX mission and to improve the completeness at 3.5 and 4.9 micron. Since the filtering process improves the average per measurement uncertainty, a sensitive selection criterion is warranted to include as many sources as possible. There were 7872 sources with 2MASS J <= 4.51, 20,492 sources with 2MASS K <= 3.81, 4969 sources with IRAS F12 >= 15 Jy, 40 sources in the MSX IRAS Gaps survey with MSX F12 >= 15 Jy, 2753 sources with IRAS F25 >= 27.5 Jy, and 18 sources in the MSX IRAS Gaps survey with MSX F25 >= 27.5 Jy. Thus, the initial list is dominated by stars selected by the 2MASS criteria. These lists were merged together to make a single target list, containing 21,335 sources. To merge the 2MASS and IRAS/MSX lists, the authors used a 60 arcsecond matching radius. If more than one 2MASS source was within 60 arcseconds of the IRAS position, they assumed that the brightest K band source was the match. Note that the authors did not include sources in their input list based on their 60 and/or 100 micron IRAS flux densities, as extended emission from cirrus becomes more significant at these wavelengths. This means that the DIRBE Point Source Catalog is biased against very cold objects, such as galaxies and molecular clouds. Since the authors only used the point source catalogs of 2MASS, IRAS, and MSX for source selection, their sample is also biased against extended objects. Note also that they are only targeting sources bright enough to detect their possible variability in the DIRBE database (i.e., sources that may be detected in a single DIRBE scan at at least one DIRBE wavelength). By co-adding the full light curves, it may be possible to detect fainter objects in the DIRBE database, but without variability information and with a higher likelihood of confusion. The COBE DIRBE Point Source Catalog as presented here contains the time-averaged DIRBE flux densities F<sub>nu</sub> in the 10 DIRBE bands for all 11,785 sources in the initial list that had a flux at minimum in the weekly averaged light curve in any of the six shortest DIRBE wavelengths greater than 3 times the average noise per data point, plus three additional sources (see Section 6 of the reference paper). These flux densities were calculated after filtering the light curves. The name of the object in the catalog from which it was originally selected from is also given (IRAS/MSX and/or 2MASS). This table was created by the HEASARC in April 2012 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJS/154/673">CDS Catalog J/ApJS/154/673</a> files table1.dat, table4.dat and table8.dat, and contains the DIRBE data for 11,788 of the brightest near- and mid-infrared point sources in the sky together with supporting data from 2MASS, IRAS, MSX and other catalogs. This is a service provided by NASA HEASARC .
- ID:
- ivo://CDS.VizieR/J/PASJ/53/971
- Title:
- CO catalog of LMC molecular clouds
- Short Name:
- J/PASJ/53/971
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- From a ^12^CO (J=1-0) survey with the NANTEN telescope, we present a complete catalog of giant molecular clouds (GMCs) in the Large Magellanic Cloud. In total, 107 CO clouds have been identified, 55 of which were detected at more than 3 observed positions. For the 55 clouds, the physical properties, such as size, line-width, virial mass, and CO luminosity, are cataloged.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A124
- Title:
- CO-CAVITY pilot survey. CO spectra
- Short Name:
- J/A+A/658/A124
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Voids are the most under-dense large-scale regions in the Universe. Galaxies inhabiting voids are one of the keys to understand the intrinsic processes of galaxy evolution, as external factors such as multiple galaxy mergers or a dense self-collapsing environment are negligible. We present the first molecular gas mass survey of void galaxies. We compare these new data, together with data for the atomic gas mass (MHI) and star formation rate (SFR) from the literature to those of galaxies in filaments and walls in order to better understand how molecular gas and star formation are related to the large-scale environment. We observed at the IRAM 30-m telescope the CO(1-0) and CO(2-1) emission of 20 void galaxies selected from the VoidGalaxy Survey (VGS), with a stellar mass range from 108.5to 1010.3M. We detected 15 objects in at least one CO line. We compare the molecular gas mass (MH2), the star formation efficiency (SFE=SFR/MH2), the atomic gas mass, the molecular-to-atomic gas-mass ratio, and the specific star formation rate (sSFR) of the void galaxies with two control samples of galaxies in filaments and walls,selected from xCOLD GASS and EDGE-CALIFA, for different stellar mass bins and taking the star formation activity into account. In general, we do not find any significant differences between void galaxies and the control sample. In particular, we do not find any evidence for a difference in the molecular gas mass or molecular gas mass fraction. Also for the other parameters (SFE,atomic gas mass, molecular-to-atomic gas mass ratio, and sSFR) we find similar (within the errors) mean values between void, and filament and wall galaxies when limiting the sample to star-forming galaxies. We find no evidence for an enhanced sSFR in void galaxies. Some tentative differences emerge when studying trends with stellar mass: The SFE of void galaxies might be lower than in filament and wall galaxies for low stellar masses, and there might be a trend of increasing deficiency in the HI content in void galaxies compared to galaxies in filaments and walls for higher stellar masses, accompanied by an increase in the molecular-to-atomic gas-mass ratio. However, all trends with stellar mass are based on a low number of galaxies and need to be confirmed for a larger sample. The results for the molecular gas mass for a sample of 20 voids galaxies allowed us, for the first time, to make a statistical comparison to galaxies in filaments and walls. We do not find any significant differences of the molecular gas properties and the SFE, but we note that a larger sample is necessary to confirm this and be sensitive to subtle trends.
- ID:
- ivo://nasa.heasarc/cocd
- Title:
- COCD: Catalog of Open Cluster Data
- Short Name:
- COCD
- Date:
- 28 Feb 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The Catalog of Open Cluster Data (COCD) is a result of studies of the wide neighborhoods of 513 open clusters and 7 compact associations carried out in the high-precision homogeneous All-Sky Compiled Catalog of 2.5 Million Stars (ASCC-2.5, Kharchenko 2001, <a href="https://cdsarc.cds.unistra.fr/ftp/cats/I/280">CDS Cat. <I/280></a>). On the basis of data on about 33,000 possible members (including about 10,000 most probable ones) and homogeneous methods of cluster parameter determination, the angular sizes of cluster cores and coronae, cluster heliocentric distances, mean proper motions, mean radial velocities and ages were established and collected in the COCD. These include cluster distances for 200 clusters, average cluster radial velocities for 94 clusters, and cluster ages for 195 clusters derived for the first time. Clusters in the catalogue are sequenced in their Right Ascension J2000 order. The Open Cluster Diagrams Atlas (OCDA) presents a set of open cluster diagrams used for the determination of parameters of the 513 open clusters and 7 compact associations, and is intended to illustrate the quality of the constructed cluster membership (Kharchenko et al. 2004, CDS Cat. <J/AN/325/740>), and the accuracy of the derived cluster parameters. Every diagram presents relation between various stellar data from the ASCC-2.5 in the area of the specific cluster. There are five diagrams provided for every cluster in the Atlas: the area map, the density profile, the vector point diagram, the magnitude equation diagram and the color-magnitude diagram. The OCDA PostScript plots (one file per cluster) are available as a remote data product for entries in this table. This table was created by the HEASARC in May 2011 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/438/1163">CDS Catalog J/A+A/438/1163</a> files cocd.dat and notes.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/cocdext1
- Title:
- COCD: Catalog of Open Cluster Data First Extension
- Short Name:
- COCDEXT1
- Date:
- 28 Feb 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains a list of 130 Galactic open clusters, found in the All-Sky Compiled Catalogue of 2.5 Million Stars (ASCC-2.5) and not included in the original Catalog of Open Cluster Data (COCD): it is known as the 1st Extension of the COCD (COCD-1). For these new clusters, the authors determined a homogeneous set of astrophysical parameters such as size, membership, motion, distance and age. In their previous work (the Browse table COCD based on the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/438/1163">CDS Cat. J/A+A/438/1163</a>), 520 already-known open clusters out of a sample of 1700 clusters from the literature were confirmed in the ASCC-2.5 using independent, objective methods. Using these same methods, the whole sky was systematically screened for new clusters. The newly detected clusters show the same distribution over the sky as the known ones. It is found that without the a priori knowledge about existing clusters the authors' search lead to clusters which are, on average, brighter, have more members and cover larger angular radii than the 520 previously-known ones. On the basis of data on about 6,200 possible members (including about 2,200 most probable ones) and homogeneous methods of cluster parameter determination, the angular sizes of cluster cores and coronae, cluster heliocentric distances, colour-excesses, mean proper motions, and ages of 130 clusters and mean radial velocities of 69 clusters were established and collected in the COCD-1. Clusters in the catalogue are numbered in order of increasing J2000.0 Right Ascension. The 1st Extension of the Open Cluster Diagrams Atlas (OCDA-1) presents a set of open cluster diagrams used for the determination of parameters of the 130 newly discovered open clusters, and is intended to illustrate the quality of the constructed cluster membership, and the accuracy of the derived cluster parameters. Every diagram presents relations between various stellar data from the all sky catalog ASCC-2.5(Kharchenko, 2001, CDS Cat. <I/280>) in the area of the specific cluster. There are five diagrams provided for every cluster in the Atlas: the area map, the density profile, the vector point diagram, the "magnitude equation" (proper motion in each coordinate versus V magnitude) diagram, and the color-magnitude diagram. The 130 OCDA-1 PostScript plots (one file per cluster) are available as a remote data product for all of the entries in this table. This table was created by the HEASARC in May 2011 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/440/403/">CDS Catalog J/A+A/440/403/</a> files cluster.dat and notes.dat. This is a service provided by NASA HEASARC .