- ID:
- ivo://cxc.harvard.edu/csc.siap
- Title:
- Chandra Source Catalog
- Short Name:
- CSC
- Date:
- 25 Jun 2025 16:54:00
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 2.1 of the catalog includes 407,806 point, compact, and extended sources detected in ACIS and HRC-I imaging observations released publicly prior to the end of 2021. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: https://cxc.harvard.edu/ for general Chandra information; https://cxc.harvard.edu/cda/ for the Chandra Data Archive; https://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
Number of results to display per page
Search Results
- ID:
- ivo://cxc.harvard.edu/cscr2.siap
- Title:
- Chandra Source Catalog Release 2
- Short Name:
- CSCR2
- Date:
- 25 Jun 2025 16:54:00
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 2.0 of the catalog includes 317,167 point, compact, and extended sources detected in ACIS and HRC-I imaging observations released publicly prior to the end of 2014. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: https://cxc.harvard.edu/ for general Chandra information; https://cxc.harvard.edu/cda/ for the Chandra Data Archive; https://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
- ID:
- ivo://cxc.harvard.edu/cscr1.siap
- Title:
- Chandra Source Catalog Release 1
- Short Name:
- CSCR1
- Date:
- 25 Jun 2025 16:54:00
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 1.1 of the catalog includes about 138,000 point and compact sources with observed spatial extents less than ~30 arcsec detected in a subset of ACIS and HRC-I imaging observations released publicly prior to the end of 2009. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: https://cxc.harvard.edu/ for general Chandra information; https://cxc.harvard.edu/cda/ for the Chandra Data Archive; https://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
- ID:
- ivo://cxc.harvard.edu/cscr2.1.siap
- Title:
- Chandra Source Catalog Release 2.1
- Short Name:
- CSC
- Date:
- 25 Jun 2025 16:54:00
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range. The Chandra Source Catalog (CSC) includes information about X-ray sources detected in observations obtained using the Chandra X-ray Observatory. Release 2.1 of the catalog includes 407,806 point, compact, and extended sources detected in ACIS and HRC-I imaging observations released publicly prior to the end of 2021. Observed source positions and multi-band count rates are reported, as well as numerous derived spatial, photometric, spectral, and temporal calibrated source properties that may be compared with data obtained by other telescopes. Each record includes the best estimates of the properties of a source based on data extracted from all observations in which the source was detected. The Chandra Source Catalog is extracted from the CXC"s Chandra Data Archive (CDA). The CXC should be acknowledged as the source of Chandra data. For detailed information on the Chandra Observatory and datasets see: https://cxc.harvard.edu/ for general Chandra information; https://cxc.harvard.edu/cda/ for the Chandra Data Archive; https://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
- ID:
- ivo://cxc.harvard.edu/cda.siap
- Title:
- Chandra X-ray Observatory Data Archive
- Short Name:
- CDA
- Date:
- 25 Jun 2025 16:54:00
- Publisher:
- Chandra X-ray Observatory
- Description:
- The Chandra X-ray Observatory is the U.S. follow-on to the Einstein Observatory. Chandra was formerly known as AXAF, the Advanced X-ray Astrophysics Facility, but renamed by NASA in December, 1998. Originally three instruments and a high-resolution mirror carried in one spacecraft, the project was reworked in 1992 and 1993. The Chandra spacecraft carries a high resolution mirror, two imaging detectors, and two sets of transmission gratings. Important Chandra features are: an order of magnitude improvement in spatial resolution, good sensitivity from 0.1 to 10 keV, and the capability for high spectral resolution observations over most of this range.
- ID:
- ivo://org.gavo.dc/citigbot/q/i
- Title:
- Citizen GBOT Images SIAP
- Short Name:
- citigbot sia
- Date:
- 30 Jan 2025 13:31:35
- Publisher:
- The GAVO DC team
- Description:
- This archive collects and re-publishes third-party, mostly amateur, images of the Gaia astrometry satellite to complemement the Ground Based Optical Tracking (GBOT) effort. Until Gaia passivation, there is a temporary upload facility at https://dc.g-vo.org/citigbot/q/upload/form.
- ID:
- ivo://irsa.ipac/Spitzer/Images/CLASH
- Title:
- Cluster Lensing And Supernova survey with Hubble
- Short Name:
- CLASH
- Date:
- 27 Oct 2022 19:00:00
- Publisher:
- NASA/IPAC Infrared Science Archive
- Description:
- The Cluster Lensing And Supernova survey with Hubble (CLASH) is an HST Multi-Cycle Treasury program (PI: Marc Postman) to survey 25 massive galaxy clusters at 16 wavelengths spanning from the near-UV to the near-IR (Postman et al. (2012)). The full HST dataset and associated catalogs and gravitational lens models are available at MAST. A series of programs with Spitzer have covered all CLASH galaxy clusters with IRAC Channels 1 and 2 (3.6 and 4.5 micron). Several of the targets include Channels 3 and 4 (5.8 and 8 micron) data. Spitzer mosaics, catalogs, and PSF images are available at IRSA.
- ID:
- ivo://mast.stsci/clash
- Title:
- Cluster Lensing And Supernova survey with Hubble (CLASH)
- Short Name:
- HST.CLASH
- Date:
- 22 Jul 2020 22:29:29
- Publisher:
- Space Telescope Science Institute Archive
- Description:
- By observing 25 massive galaxy clusters with HST's new panchromatic imaging capabilities (Wide-field Camera 3, WFC3, and the Advanced Camera for Surveys, ACS), CLASH will accomplish its four primary science goals: - Map, with unprecedented accuracy, the distribution of dark matter in galaxy clusters using strong and weak gravitational lensing; - Detect Type Ia supernovae out to redshift z ~ 2, allowing us to test the constancy of dark energy's repulsive force over time and look for any evolutionary effects in the supernovae themselves; - Detect and characterize some of the most distant galaxies yet discovered at z > 7 (when the Universe was younger than 800 million years old - or less than 6% of its current age); - Study the internal structure and evolution of the galaxies in and behind these clusters.
- ID:
- ivo://nasa.heasarc/skyview/co
- Title:
- CO Galactic Plane Survey
- Short Name:
- CO
- Date:
- 04 Jul 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- New large-scale CO surveys of the first and second Galactic quadrants and the nearby molecular cloud complexes in Orion and Taurus, obtained with the Harvard-Smithsonian Center for Astrophysics 1.2 m telescope, have been combined with 31 other surveys obtained over the past two decades with that instrument and a similar telescope on Cerro Tololo in Chile, to produce a new composite CO survey of the entire Milky Way. The survey consists of 488,000 spectra that Nyquist or beamwidth (1/8 deg) sample the entire Galactic plane over a strip 4 deg-10 deg wide in latitude, and beamwidth or 1/4 deg sample nearly all large local clouds at higher latitudes. Compared with the previous composite CO survey of Dame et al. (1987), the new survey has 16 times more spectra, up to 3.4 times higher angular resolution, and up to 10 times higher sensitivity per unit solid angle. <P> Users should be aware that both the angular resolution and the sensitivity varies from region to region in the velocity-integrated map. The component surveys were integrated individually using clipping or moment masking in order to display nearly all statistically significant emission but little noise above a level of ~1.5 K km/s. See the reference below and the <a href="https://lweb.cfa.harvard.edu/mmw/"> Millimeter-Wave Group site</a> for more details Provenance: Data taken by two nearly-identical 1.2 m telescopes in Cambridge, MA and on Cerro Tololo, Chile combined into a complete survey of the Milky Way with CO integrated over all velocities.. This is a service of NASA HEASARC.
- ID:
- ivo://mast.stsci/candels
- Title:
- Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS)
- Short Name:
- CANDELS
- Date:
- 12 Feb 2020 21:03:03
- Publisher:
- Space Telescope Science Institute Archive
- Description:
- CANDELS is designed to document the first third of galactic evolution from z = 8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IR and ACS. It will also find the first Type Ia SNe beyond z greater than 1.5 and establish their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected; each has multi-wavelength data from Spitzer and other facilities, and has extensive spectroscopy of the brighter galaxies. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to 109 solar masses out to z ~ 8.