The Visual and Infrared Mapping Spectrometer (VIMS) instrument
onboard the Cassini spacecraft observed the system of Saturn,
acquiring spectral cubes in the range 0.4-5.2 microns. This service
focuses on Saturn satellites, and provides access to calibrated and
ancillary data, computed as described here:
https://vims.univ-nantes.fr/info/isis-calibration. It also provides
direct links to a larger web site with previews.
The Chandra X-ray Observatory is the U.S. follow-on to the Einstein
Observatory and one of NASA"s Great Observatories.
Chandra was formerly known as AXAF, the Advanced X-ray
Astrophysics Facility, but renamed by NASA in December, 1998.
Originally three instruments and a high-resolution mirror carried in
one spacecraft, the project was reworked in 1992 and 1993. The Chandra
spacecraft carries a high resolution mirror, two imaging detectors,
and two sets of transmission gratings. Important Chandra features are:
an order of magnitude improvement in spatial resolution, good
sensitivity from 0.1 to 10 keV, and the capability for high spectral
resolution observations over most of this range.
The Chandra Source Catalog (CSC) includes information about X-ray
sources detected in observations obtained using the Chandra X-ray Observatory.
Release 2.0 of the catalog includes 317,167 point, compact, and extended
sources detected in ACIS and HRC-I imaging observations released
publicly prior to the end of 2014.
Observed source positions and multi-band count rates are reported, as
well as numerous derived spatial, photometric, spectral, and temporal
calibrated source properties that may be compared with data obtained
by other telescopes. Each record includes the best estimates of the
properties of a source based on data extracted from all observations
in which the source was detected.
The Chandra Source Catalog is extracted from the CXC"s Chandra Data
Archive (CDA). The CXC should be acknowledged as the source of Chandra data.
For detailed information on the Chandra Observatory and datasets see:
http://cxc.harvard.edu/ for general Chandra information;
http://cxc.harvard.edu/cda/ for the Chandra Data Archive;
http://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
The Chandra X-ray Observatory is the U.S. follow-on to the Einstein
Observatory and one of NASA"s Great Observatories.
Chandra was formerly known as AXAF, the Advanced X-ray
Astrophysics Facility, but renamed by NASA in December, 1998.
Originally three instruments and a high-resolution mirror carried in
one spacecraft, the project was reworked in 1992 and 1993. The Chandra
spacecraft carries a high resolution mirror, two imaging detectors,
and two sets of transmission gratings. Important Chandra features are:
an order of magnitude improvement in spatial resolution, good
sensitivity from 0.1 to 10 keV, and the capability for high spectral
resolution observations over most of this range.
The Chandra Source Catalog (CSC) includes information about X-ray
sources detected in observations obtained using the Chandra X-ray
Observatory. Release 1.1 of the catalog includes about 138,000 point
and compact sources with observed spatial extents less than ~30 arcsec
detected in a subset of ACIS and HRC-I imaging observations released
publicly prior to the end of 2009.
Observed source positions and multi-band count rates are reported, as
well as numerous derived spatial, photometric, spectral, and temporal
calibrated source properties that may be compared with data obtained
by other telescopes. Each record includes the best estimates of the
properties of a source based on data extracted from all observations
in which the source was detected.
The Chandra Source Catalog is extracted from the CXC"s Chandra Data
Archive (CDA). The CXC should be acknowledged as the source of Chandra data.
For detailed information on the Chandra Observatory and datasets see:
http://cxc.harvard.edu/ for general Chandra information;
http://cxc.harvard.edu/cda/ for the Chandra Data Archive;
http://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
The Chandra X-ray Observatory is the U.S. follow-on to the Einstein
Observatory and one of NASA"s Great Observatories.
Chandra was formerly known as AXAF, the Advanced X-ray
Astrophysics Facility, but renamed by NASA in December, 1998.
Originally three instruments and a high-resolution mirror carried in
one spacecraft, the project was reworked in 1992 and 1993. The Chandra
spacecraft carries a high resolution mirror, two imaging detectors,
and two sets of transmission gratings. Important Chandra features are:
an order of magnitude improvement in spatial resolution, good
sensitivity from 0.1 to 10 keV, and the capability for high spectral
resolution observations over most of this range.
The Chandra Source Catalog (CSC) includes information about X-ray
sources detected in observations obtained using the Chandra X-ray
Observatory. Release 2.0 of the catalog includes 317,167 point,
compact, and extended sources detected in ACIS and HRC-I imaging
observations released publicly prior to the end of 2014.
Observed source positions and multi-band count rates are reported, as
well as numerous derived spatial, photometric, spectral, and temporal
calibrated source properties that may be compared with data obtained
by other telescopes. Each record includes the best estimates of the
properties of a source based on data extracted from all observations
in which the source was detected.
The Chandra Source Catalog is extracted from the CXC"s Chandra Data
Archive (CDA). The CXC should be acknowledged as the source of Chandra data.
For detailed information on the Chandra Observatory and datasets see:
http://cxc.harvard.edu/ for general Chandra information;
http://cxc.harvard.edu/cda/ for the Chandra Data Archive;
http://cxc.harvard.edu/csc/ for Chandra Source Catalog information.
The Chandra X-ray Observatory is the U.S. follow-on to the Einstein
Observatory. Chandra was formerly known as AXAF, the Advanced X-ray
Astrophysics Facility, but renamed by NASA in December, 1998.
Originally three instruments and a high-resolution mirror carried in
one spacecraft, the project was reworked in 1992 and 1993. The Chandra
spacecraft carries a high resolution mirror, two imaging detectors,
and two sets of transmission gratings. Important Chandra features are:
an order of magnitude improvement in spatial resolution, good
sensitivity from 0.1 to 10 keV, and the capability for high spectral
resolution observations over most of this range.
Measurements of comet Halley in the spectral channel of IKS on board
the Vega-1 spacecraft. Data are retrieved from the PDS Small Bodies
Node data set (2011 reformatted version) and updated. The data set
consists in 101 tables providing the radiance spectrum of comet Halley
from various distances, plus two composite spectra. For details and
further references, see: Combes M. et al., 1988, The 2.5-12 micron
Spectrum of Comet Halley from the IKS-VEGA Experiment, Icarus, 76,
404-436 [1988Icar...76..404C]
Planetary Atmospheres Research Unit - Royal Belgian Institute for
Space Aeronomy
Description:
Derived data from measurements of the NOMAD instrument on board ESA's
Trace Gas Orbiter. For more info on NOMAD, see Vandaele et al. (2018)
https://doi.org/10.1007/s11214-018-0517-2 Vertical profiles of CO2
density and temperature of the Martian atmosphere: See papers Trompet
et al. (2023a,b) https://doi.org/10.1029/2022JE007277,
https://doi.org/10.1029/2022JE007279. Vertical profiles of H2O
density: see paper Aoki et al. (2022)
https://doi.org/10.1029/2022JE007231. Vertical profiles of O3 density:
see paper Piccialli et al. (2022) https://doi.
org/10.1029/2022EA002429 Vertical profiles of aerosols: see paper
Flimon et al. (in rev.)
Planetary Atmospheres Research Unit - Royal Belgian Institute for
Space Aeronomy
Description:
Profiles of species in Venus atmosphere terminator. Data retrieved
from calibrated spectra obtained with the SPICAV-SOIR instrument on
board the Venus Express spacecraft. These spectra can be checked on
the ESA PSA repository. See: A.C. Vandaele et al., Contribution from
SOIR/VEX to the updated Venus International Reference Atmosphere
(VIRA), Adv. Space Res. (2015),
http://dx.doi.org/10.1016/j.asr:2015.08.012.