- ID:
- ivo://CDS.VizieR/J/AJ/142/160
- Title:
- Kepler Mission. II. Eclipsing binaries in DR2
- Short Name:
- J/AJ/142/160
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Kepler Mission (launched in 2009 March) provides nearly continuous monitoring of ~156000 objects with unprecedented photometric precision. Coincident with the first data release, we presented a catalog of 1879 eclipsing binary systems identified within the 115deg^2^ Kepler field of view (FOV). Here, we provide an updated catalog from paper I (Prsa et al. 2011, Cat. J/AJ/141/83) augmented with the second Kepler data release which increases the baseline nearly fourfold to 125 days. Three hundred and eighty-six new systems have been added, ephemerides and principal parameters have been recomputed. We have removed 42 previously cataloged systems that are now clearly recognized as short-period pulsating variables and another 58 blended systems where we have determined that the Kepler target object is not itself the eclipsing binary. A number of interesting objects are identified. We present several exemplary cases: four eclipsing binaries that exhibit extra (tertiary) eclipse events; and eight systems that show clear eclipse timing variations indicative of the presence of additional bodies bound in the system. We have updated the period and galactic latitude distribution diagrams. With these changes, the total number of identified eclipsing binary systems in the Kepler FOV has increased to 2165, 1.4% of the Kepler target stars.
1 - 2 of 2
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJS/210/19
- Title:
- Kepler planetary candidates. IV. 22 months
- Short Name:
- J/ApJS/210/19
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We provide updates to the Kepler planet candidate sample based upon nearly two years of high-precision photometry (i.e., Q1-Q8). From an initial list of nearly 13400 threshold crossing events, 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during transit. We also re-evaluate Kepler Objects of Interest (KOIs) 1-1609, which were identified early in the mission, using substantially more data to test for background false positives and to find additional multiple systems. Combining the new and previous KOI samples, we provide updated parameters for 2738 Kepler planet candidates distributed across 2017 host stars. From the combined Kepler planet candidates, 472 are new from the Q1-Q8 data examined in this study. The new Kepler planet candidates represent ~40% of the sample with R_P_~1R_{oplus}_ and represent ~40% of the low equilibrium temperature (T_eq_<30 K) sample. We review the known biases in the current sample of Kepler planet candidates relevant to evaluating planet population statistics with the current Kepler planet candidate sample.