The Messier Catalog of bright, extended objects was compiled by the comet-hunter Charles Messier in the 18th century. It comprised a list of 110 objects which are mostly brighter than 10th magnitude and have angular sizes from 1 to 100 arcminutes. M 102 is now generally considered to be spurious, and the object so named was actually M 101. Hence this electronic version of the Messier Catalog contains only 109 objects. The objects in the Messier Catalog are predominantly star clusters in our Milky Way galaxy, with 29 of them being globular clusters, 27 open clusters; the rest are spiral galaxies (27), elliptical galaxies (11), diffuse and planetary nebulae (10), and miscellaneous objects (5). All of the objects in the Messier Catalog are north of -35 degrees declination. This is a service provided by NASA HEASARC .
Thie database table is a catalog of 11438 stars in the field of M31 and 8778 stars in 2 nearby "foreground" fields. It is based on a set of Tautenburg Schmidt plates in U, B, V, and R taken by van den Bergh. The range of visual magnitudes of stars is 11.5 < V < 20. This is a service provided by NASA HEASARC .
This database table contains a list of 288 globular cluster candidates and 132 miscellaneous objects found in a 70 arcminute square field centered on the M 31 (Andromeda) Galaxy. This is a service provided by NASA HEASARC .
Midcourse Space Experiment (MSX) Point Source Catalog, V2.3
Short Name:
MSX
Date:
07 Mar 2025
Publisher:
NASA/GSFC HEASARC
Description:
This table contains the main catalog from Version 2.3 of the Midcourse Space Experiment (MSX) Point Source Catalog (PSC), which supersedes the previous version (1.2) that was released in 1999, and contains 100,000 more sources than the latter. The MSX PSC main catalog used to create this Browse table contains all the sources found in the Galactic Plane survey, and the primary high-latitude regions (the IRAS gaps regions, and the Large Magellanic Cloud). Note that this HEASARC table does not contain the MSX PSC supplementary catalogs, viz. the singleton catalog, the low-reliability catalog, or the minicatalogs for 19 selected regions. The principal objective of the astronomy experiments onboard the MSX satellite was to complete the census of the mid-infrared (4.2-25 micron or um) sky: namely, the areas missed by the IRAS mission (about 4% of the sky was not surveyed by IRAS), and the Galactic Plane (where the sensitivity of IRAS was degraded by confusion noise in regions of high source densities or of structured extended emission). The photometry is based on co-added image plates, as opposed to single-scan data, which results in improved sensitivity and hence reliability in the fluxes. Comparison with Tycho-2 positions indicates that the astrometric accuracy of the new catalog is more than 1" better than that in Version 1.2. The infrared instrument on MSX was named SPIRIT III; it was a 35-cm clear aperture off-axis telescope with five line scanned infrared focal-plane arrays of 18.3 arcseconds square pixels, with a high sensitivity (0.1 Jy at 8.3 um). The filter characteristics of the 6 spectral bands B1, B2, A, C, D and E are summarized below, where all wavelengths are in micron (µm): <pre> Band Center FWHM Points ---------------------------- B1 4.29 um 4.22 - 4.36 um B2 4.35 4.24 - 4.45 A 8.28 6.8 - 10.8 C 12.13 11.1 - 13.2 D 14.65 13.5 - 15.9 E 21.34 18.2 - 25.1 </pre> The MSX catalog names of the sources have been defined according to International Astronomical Union (IAU) conventions with a unique identifier combined with the position of the source. In this case, the MSX PSC V2.3 sources are named using the convention MSX6C GLLL.llll+/-BB.bbbb, where MSX6C denotes that this is MSX data run using Version 6.0 of the CONVERT software, and GLLL.llll+/-BB.bbbb gives the Galactic coordinates of the source. This database table was first created by the HEASARC in November 2002 and then updated in April 2005, based on the 11-Dec-2003 version of the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/V/114">CDS Catalog V/114</a> (specifically, the files gb_gt6.dat, gp_m05m2.dat, gp_m2m6.dat, gp_p05p2.dat, gp_p2p6.dat, and gp_pm05.dat which comprise the main catalog). This is a service provided by NASA HEASARC .
Midcourse Space Experiment (MSX) Ultraviolet Point Source Catalog
Short Name:
MSXUVPSC
Date:
07 Mar 2025
Publisher:
NASA/GSFC HEASARC
Description:
The Midcourse Space Experiment (MSX) Ultraviolet Point Source Catalog contains 47,283 point sources (the HEASARC notes that there actually 47,318 sources in this version of the table, 35 more than this number) from a set of 201 observations that surveyed approximately half the sky and from a set of 32 pointed observations toward specific targets. For each source, the catalog provides the position, UV magnitude and uncertainty in at least one of six filters, and, where possible, an identification of a nearby source from the SIMBAD database. If a nearby source is identified, its proximity to the MSX source, and if known, the spectral type and the B and V magnitudes of the SIMBAD object are also provided. There were 11,565 matches between MSX and SIMBAD objects (the HEASARC notes that there actually 11,662 matches in this version of the table, 97 more than this number), and the authors estimate the number of false identifications to be about 3%. The limiting fluxes differ from filter to filter, and range from 10<sup>-16</sup> erg/s/cm<sup>2</sup>/Angstrom for IUN4 to 7.8 x 10<sup>-12</sup> erg/s/cm<sup>2</sup>/Angstrom for IUW3. Because of variations among the observation sets, the catalog is not complete to the limiting magnitudes for the filters. The UV instrument on MSX was named UVISI (Mill et al., 1994, Journal of Spacecraft and Rockets, 31, 900 (1994JSpRo..31..900M in ADS); Carbary et al., 1994, Applied Optics, 33, 4201 (1994ApOpt..33.4201C in ADS)). The fields-of-view for the narrow-field and wide-field UV imagers were 1.46 x 1.19 degrees (detector pixels of 20.6" x 17.5") and 13.4 x 9.2 degrees (detector pixels of 3.12' x 2.27'), respectively. Four filters were used with the narrow-field imager (IUN) with effective wavelengths centered at 2480 Angstrom (IUN3), 2310 Angstrom (IUN4), 2230 Angstrom (IUN5), and 2930 Angstrom (IUN6). Two filters were used with the wide-field imager (IUW) and centered at 1320 Angstrom (IUW3) and 1560 Angstrom (IUW6). The HEASARC has removed from this table the parameter describing the objects' magnitude in the IUN5 filter as all of the sources had null values for this parameter. The CDS had previously made the following modifications compared to the version of the catalog as published in the reference paper: <pre> (1) The angular distances to the SIMBAD object (column "AngDist" of file catal.dat, called 'Offset' in this HEASARC table) was recomputed at CDS, the original values looking suspect. (2) In the course of this modification, 17 SIMBAD IDs were removed due to a large offset, most likely due to a sign error in the interpretation of SIMBAD's declination for IDs: 003341+001712 063054+004539 063211+005630 063754+003151 133358+001928 142557+003939 144541+002439 155701+004808 162743+004620 185855+003355 191033+004132 193004+005316 194525+001239 195040+004101 195717+001959 202844+005149 234324+000729 </pre> This table was created by the HEASARC in April 2012 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/II/269">CDS Catalog II/269</a> file catal.dat. This is a service provided by NASA HEASARC .
Milky Way Globular Clusters Catalog (December 2010 Version)
Short Name:
GC
Date:
07 Mar 2025
Publisher:
NASA/GSFC HEASARC
Description:
This is the Catalog of Parameters for Milky Way Globular Clusters (December 2010 Version) that was compiled by William E. Harris of McMaster University. This is the first update since 2003 and the biggest single revision since the original version of the catalog published in 1996. The list now contains a total of 157 objects classified as globular clusters. Major upgrades have been made especially to the cluster coordinates, metallicities, and structural profile parameters, and the list of parameters now also includes the central velocity dispersion. This table contains basic parameters on distances, velocities, metallicities, luminosities, colors, and dynamical parameters for over 150 objects that are regarded as globular clusters in the Milky Way galaxy. Please acknowledge the use of this catalog in any published work you derive from it. The proper reference to the literature is the published paper (Harris, W.E. 1996, AJ, 112, 1487) which briefly describes the setup of the catalog. When you cite it in your text, please use "Harris 1996 (2010 edition)". The author would also greatly appreciate receiving any new information, in published or preprint form, which would help him to keep the list up to date (contact W. E. Harris at harris@physics.mcmaster.ca). A full discussion of the sources used in the creation of this catalog and of the parameters that it contains can be found in the file: <a href="http://physwww.mcmaster.ca/~harris/mwgc.ref">http://physwww.mcmaster.ca/~harris/mwgc.ref</a>. This table was originally ingested by the HEASARC circa 1995. It was last updated by the HEASARC in February 2014 based on an electronic version (dated December 2010) copied from the file <a href="http://physwww.mcmaster.ca/~harris/mwgc.dat">http://physwww.mcmaster.ca/~harris/mwgc.dat</a>. This is a service provided by NASA HEASARC .
This study presents a catalog of 8107 molecular clouds that covers the entire Galactic plane and includes 98% of the <sup>12</sup>CO emission observed within b +/- 5 deg. The catalog was produced using a hierarchical cluster identification method applied to the result of a Gaussian decomposition of the Dame+ (2001ApJ...547..792D) data. The total H<sub>2</sub> mass in the catalog is 1.2 x 10<sup>9</sup> M<sub>sun</sub>, in agreement with previous estimates. The authors find that 30% of the sight lines intersect only a single cloud, with another 25% intersecting only two clouds. The most probable cloud size is R~30pc. In contrast with the general idea, the authors find a rather large range of values of surface densities, Sigma = 2 to 300 M<sub>sun</sub>/pc<sup>2</sup>, and a systematic decrease with increasing Galactic radius, R<sub>gal</sub>. The cloud velocity dispersion and the normalization sigma<sub>0</sub> = sigma<sub>v</sub> / R<sup>1/2</sup> both decrease systematically with R<sub>gal</sub>. When studied over the whole Galactic disk, there is a large dispersion in the line width-size relation and a significantly better correlation between sigma<sub>v</sub> and SigmaR. The normalization of this correlation is constant to better than a factor of two for R<sub>gal</sub> < 20kpc. This relation is used to disentangle the ambiguity between near and far kinematic distances. The authors report a strong variation of the turbulent energy injection rate. In the outer Galaxy it may be maintained by accretion through the disk and/or onto the clouds, but neither source can drive the 100 times higher cloud-averaged injection rate in the inner Galaxy. The data set used in this catalog come from that of Dame+ (2001ApJ...547..792D). Those authors combined observations obtained over a period of 20 yr with two telescopes, one in the north (first located in New York City and then moved to Cambridge, Massachusetts) and one in the south (Cerro Tololo, Chile). These 1.2m telescopes have an angular resolution of ~8.5' at 115GHz, the frequency of the <sup>12</sup>CO 1-0 line. For the current study the authors used the data set covering the whole Galactic plane with +/- 5 deg in Galactic latitude. This table was created by the HEASARC in March 2019 based upon the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/834/57">CDS Catalog J/ApJ/834/57</a> file table1.dat. This is a service provided by NASA HEASARC .
Milky Way Project First Data Release IR Bubble Catalog
Short Name:
MWP1BUBBLE
Date:
07 Mar 2025
Publisher:
NASA/GSFC HEASARC
Description:
This table contains a new catalog of 5106 infrared bubbles created through visual classification via the online citizen science website 'The Milky Way Project' (MWP). Bubbles in the new catalog have been independently measured by at least five individuals, producing consensus parameters for their positions, radii, thicknesses, eccentricities and position angles. Citizen scientists - volunteers recruited online and taking part in this research - have independently rediscovered the locations of at least 86% of three widely used catalogs of bubbles and H II regions while finding an order of magnitude more objects. 29% of the bubbles in the Milky Way Project catalog lie on the rim of a larger bubble, or have smaller bubbles located within them, opening up the possibility of better statistical studies of triggered star formation. This online resource of the <a href="http://www.milkywayproject.org/">Milky Way Project</a> provides a crowd-sourced map of bubbles and arcs in the Milky Way, and will enable better statistical analysis of Galactic star formation sites. This table is the first data release of the MWP IR Bubble Catalog: the authors anticipate a future release of a second, refined catalog incorporating better data-reduction techniques. This table was created by the HEASARC in March 2013 based on the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/MNRAS/424/2442">CDS Catalog J/MNRAS/424/2442</a> files mwplarge.dat and mwpsmall.dat. This is a service provided by NASA HEASARC .
Although they are the main constituents of the Galactic disk population, for half of the open clusters in the Milky Way reported in the literature nothing is known except the raw position and an approximate size. The main goal of this study is to determine a full set of uniform spatial, structural, kinematic, and astrophysical parameters for as many known open clusters as possible. On the basis of stellar data from PPMXL and 2MASS, the authors used a dedicated data-processing pipeline to determine kinematic and photometric membership probabilities for stars in a cluster region. For an input list of 3,784 targets from the literature, they confirm that 3,006 are real objects, the vast majority of them are open clusters, but associations and globular clusters are also present. For each confirmed object, the authors determined the exact position of the cluster center, the apparent size, proper motion, distance, color excess, and age. For about 1,500 clusters, these basic astrophysical parameters have been determined for the first time. For the bulk of the clusters the authors also derived the tidal radii. In addition, they estimated average radial velocities for more than 30% of the confirmed clusters. The present sample (called MWSC) reaches both the central parts of the Milky Way and its outer regions. It is almost complete up to 1.8 kpc from the Sun and also covers the neighboring spiral arms. However, for a small subset of the oldest open clusters (ages more than ~ 1 Gyr), the authors found some evidence of incompleteness within about 1 kpc from the Sun. This table contains the list of 3,006 Milky Way stellar clusters (MWSC) found in the 2MAst (2MASS with Astrometry) catalog presented in Paper II of this series (these clusters have source numbers below 4000), together with an additional 139 new open clusters (these clusters have source numbers between 5000 and 6000) found by the authors at high Galactic latitudes (|b_II_| > 18.5 degrees) which were presented in Paper III of the series, and an additional 63 new open clusters (these clusters have source numbers between 4000 and 5000) which were presented in Paper IV of the series. The target list in Paper II from which the 3,006 open clusters was contained was compiled on the basis of present-day lists of open, globular and candidate clusters. The list of new high-latitude open clusters in Paper III was obtained from a target list of 714 density enhancements found using the 2MASS Catalog. The list of new open clusters in Paper IV was obtained from an initial list of 692 compact cluster candidates which were found by the authors by conducting an almost global search of the sky (they excluded the portions of the sky with |b_II_| < 5 degrees) in the PPMXL and the UCAC4 proper-motion catalogs. For confirmed clusters, the authors determined a homogeneous set of astrophysical parameters such as membership, angular radii of the main morphological parts, mean cluster proper motions, distances, reddenings, ages, tidal parameters, and sometimes radial velocities. This table was created by the HEASARC in February 2014 based on the list of open clusters given in <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/558/A53">CDS Catalog J/A+A/558/A53</a> files catalog.dat and notes.dat. It was updated in September 2014 with 139 additional star clusters from <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/568/A51">CDS Catalog J/A+A/568/A51</a> files catalog.dat and notes.dat. It was further updated in October 2015 with 63 additional star clusters from <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/581/A39">CDS Catalog J/A+A/581/A39</a> files catalog.dat and notes.dat. Note that this table does not include the information on candidates which turned out not to be open clusters which was also contained in these catalogs. This is a service provided by NASA HEASARC .
Million Quasars Catalog (MILLIQUAS), Version 8 (2 August 2023)
Short Name:
MILLIQUAS
Date:
07 Mar 2025
Publisher:
NASA/GSFC HEASARC
Description:
This table contains the Million Quasars (MILLIQUAS) Catalog, Version 8 (2 August 2023). It is a compendium of 907,144 type-I QSOs and AGN, largely complete from the literature to 30 June 2023. 66,026 QSO candidates are also included, calculated via radio/X-ray association (including double radio lobes) as being 99% likely to be quasars. Blazars and type-II objects are also included, bringing the total count to 1,021,800. 60.7% of all objects show Gaia-EDR3 astrometry. Low-confidence/quality or questionable objects (so deemed by their researchers) are not included in Milliquas. Additional quality cuts can be applied as detailed in the HMQ paper (Flesch 2015,PASA,32,10). Full QSO/AGN classification is accomplished via spectral lines, yielding a reliable spectroscopic redshift. Two spectral lines are required, or one spectral line refining a compatible photometric redshift. Obscured AGN with redshifts from the hosts only are taken to be type-II objects. Some legacy quasars with neither good spectra nor radio/X-ray association were flagged by Gaia-EDR3 as 5-sigma moving (i.e., stars), and so were removed from Milliquas. All objects are de-duplicated across source catalogs. The author's aim here is to present one unique reliable object per each data row. Two NIQs offset < 2 arcsec can be reported as a single object if within the same host. Lenses are reported as single objects onto the brightest quasar imaged. (Milliquas is not a catalog of lenses.) The contents are relatively simple; each object is shown as one entry with the sky coordinates (of whatever epoch), its original name, object class, red and blue optical magnitudes, PSF class, redshift, the citations for the name and redshift, and up to four radio/X-ray identifiers where applicable. Questions/comments/praise/complaints may be directed to Eric Flesch at eric@flesch.org. If you use this catalog in published research, the author requests that you please cite it. The confirmed quasars of this catalog (to Jan 2015) were published as the Half Million Quasars (HMQ) catalog: Flesch E., 2015,PASA,32,10. Note however that Milliquas uses optical sky data from ASP (2017,PASA,34,25) whereas the HMQ used optical sky data from QORG (2004,A&A,427,387) Appendix A. This table was updated by the HEASARC in July 2023 based on a machine-readable catalog obtained from the author's MILLIQUAS website at <a href="https://quasars.org/milliquas.htm">https://quasars.org/milliquas.htm</a>. <p> This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. <p> This research has made use of the SIMBAD database and CDS cross-match service (to obtain Gaia-EDR3 and Pan-STARRS photometry) provided by CDS, Strasbourg, France. <a href="https://simbad.cds.unistra.fr/simbad">https://simbad.cds.unistra.fr/simbad</a> This is a service provided by NASA HEASARC .