- ID:
- ivo://nasa.heasarc/ngc2808cxo
- Title:
- NGC 2808 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC2808CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the sources detected in a Chandra X-ray observation of the Galactic globular cluster NGC 2808, as well as the corresponding XMM-Newton data for those sources which have XMM-Newton X-ray counterparts. Using new Chandra X-ray observations and existing XMM-Newton X-ray and Hubble Space Telescope far-ultraviolet observations, the authors aim to detect and identify the faint X-ray sources belonging to NGC 2808 in order to understand their role in the evolution of globular clusters. The authors classify the X-ray sources associated with the cluster by analysing their colors and variability. Previous observations with XMM-Newton and far-ultraviolet observations with Hubble are re-investigated to help identify the Chandra sources associated with the cluster. The authors compare their results to population synthesis models and observations of other Galactic globular clusters. NGC 2808 was observed with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer-Imager (ACIS-I) on 2007 June 19-21 (28 months after the XMM-Newton observation referred to the reference paper) for two distinct exposures of 46 and 11 kiloseconds. The authors detect 113 sources, of which 16 fall inside the half-mass radius of NGC 2808 and are concentrated towards the cluster core. This table was created by the HEASARC in February 2009 based on the electronic version of Table 1 from the paper which was obtained from the CDS (their catalog J/A+A/490/641 file table1.dat). This is a service provided by NASA HEASARC .
Number of results to display per page
Search Results
- ID:
- ivo://nasa.heasarc/ngc2237cxo
- Title:
- NGC 2237 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC2237CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The authors have obtained high spatial resolution Chandra X-ray images of the NGC 2237 young stellar cluster on the periphery of the Rosette Nebula. They detect 168 X-ray sources, 80% of which have stellar counterparts in USNO, Two Micron All Sky Survey, and deep FLAMINGOS images. These constitute the first census of the cluster members with 0.2 <~ M <~ 2 M<sub>sun</sub>. Star locations in near-infrared color-magnitude diagrams indicate a cluster age of around 2 Myr with a visual extinction of 1 <~ AV <~ 3 at 1.4 kpc, the distance of the Rosette Nebula's main cluster NGC 2244. The authors derive the K-band luminosity function and the X-ray luminosity function of the cluster, which indicate a population of ~ 400-600 stars. The X-ray-selected sample shows a K-excess disk frequency of 13%. The young Class II counterparts are aligned in an arc ~3 pc long suggestive of a triggered formation process induced by the O stars in NGC 2244. The diskless Class III sources are more dispersed. Several X-ray emitting stars are located inside the molecular cloud and around gaseous pillars projecting from the cloud. These stars, together with a previously unreported optical outflow originating inside the cloud, indicate that star formation is continuing at a low level and the cluster is still growing. This X-ray view of young stars on the western side of the Rosette Nebula complements the authors' earlier studies of the central cluster NGC 2244 and the embedded clusters on the eastern side of the Nebula. The large-scale distribution of the clusters and molecular material is consistent with a scenario in which the rich central NGC 2244 cluster formed first, and its expanding H II region triggered the formation of the now-unobscured satellite clusters Rosette Molecular Cloud (RMC) XA and NGC 2237. A large swept-up shell of material around the H II region is now in a second phase of collect-and-collapse fragmentation, leading to the recent formation of subclusters. Other clusters deeper in the molecular cloud appear unaffected by the Rosette Nebula expansion. Some sources which have information from published catalogs are listed by their source_number value below, where for convenience, [OI81] = Ogura & Ishida (1981, PASJ, 33, 149), [MJD95] = Massey, Johnson, & Degioia-Eastwood (1995, ApJ, 454, 151) and [BC02] = Berghofer & Christian (2002, A&A, 384, 890): <pre> 53 = [OI81] 14 = [MJD95] 104; spectral type B1V; pmRA=11.0 mas/yr, pmDE=-2.8 mas/yr; 54 = [OI81] 10 = [MJD95] 108; spectral type B2V; pmRA=-2.3 mas/yr, pmDE=-11.9 mas/yr; 61 = V539 Mon [OI81] 13 = [MJD95] 110; MSX6C G206.1821-02.3456; pmRA=2.8 mas/yr, pmDE=0.4 mas/yr; 71 = [OI81] 12 = [MJD95] 102; pmRA=6.8 mas/yr, pmDE=0.6 mas/yr; 128 = [OI81] 35 = [MJD95] 471; spectral type A2:; pmRA=-0.8 mas/yr, pmDE=3.6 mas/yr; 138 = [OI81] 36 = [MJD95] 497; spectral type B5; pmRA=6.5 mas/yr, pmDE=2.1 mas/yr; 141 = [MJD95] 498; pmRA=-3.0 mas/yr, pmDE=1.9 mas/yr; 149 = [BC02] 11; known X-ray source; log(Lx(ROSAT/PSPC))=31.01 erg/s; pmRA=0.6 mas/yr, pmDE=-12.6 mas/yr; 161 = [MJD95] 653; pmRA=-1.0 mas/yr, pmDE=-5.4 mas/yr </pre> This table was created by the HEASARC in July 2010 based on electronic versions of Tables 1, 2, 3 and 4 of the reference paper which were obtained from the electronic ApJ web site. To distinguish between the 130 X-ray sources in the primary sample (Table 1 of the reference paper) and the 38 X-ray sources in the tentative sample (Table 2 of the reference paper), the HEASARC has created a parameter called source_sample which is set to 'P' for the primary sources and to 'T' for the tentative sources. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc6231cxo
- Title:
- NGC 6231 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC6231CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- NGC 6231 is a massive young star cluster, near the center of the Sco OB1 association. While its OB members are well studied, its low-mass population has received little attention. In the reference paper, the authors present high-spatial resolution Chandra ACIS-I X-ray data, wherein they detect 1,613 point X-ray sources. Their main aim was to clarify the global properties of NGC 6231 down to low masses through a detailed membership assessment, and to study the cluster stars' spatial distribution, the origin of their X-ray emission, the cluster age and formation history, and its initial mass function. The authors use X-ray data, complemented by optical and IR data, to establish cluster membership. The spatial distribution of different stellar subgroups also provides highly significant constraints on cluster membership, as does the distribution of X-ray hardness. In their study, the authors perform spectral modeling of group-stacked X-ray source spectra. The X-ray properties of the sources detected in the Chandra observations of NGC 6231, and their cross-identifications in the catalogs of Sung, Sana, and Bessell (2013 AJ, 145, 37; hereafter SSB); VPHAS+ (Drew et al., 2014, MNRAS, 440, 2036); and 2MASS (<a href="https://cdsarc.cds.unistra.fr/ftp/cats/II/246">CDS Cat. II/246</a>), and information about membership, H-alpha or IR excess, mass and luminosity are also provided. SSB derive a distance modulus for NGC 6231 of 11.0 (1,585 pc), a reddening E(B - V) = 0.47, and a nearly normal reddening law with R = 3.2. The present authors adopt these values for this work. NGC 6231 was observed twice in X-rays with the ACIS-I detector on-board the Chandra X-ray Observatory on 2005, July 3 to 4 (ObsId 5372) and 16 to 17 (ObsID 6291), respectively. The two pointings share the same center (aimpoint) but were performed with a different roll angle. Effective exposure times for the observations were 76.19 and 44.39 ks, respectively, making the total exposure time 120.58 ks. The data were filtered to retain the energy band 0.3 - 8.0 keV, and the full-field lightcurves were inspected to search for high-background periods, but none were found. Exposure maps were computed using standard CIAO software tasks. To these prepared datasets, the authors applied the source detection software PWDetect, a wavelet-based detection algorithm developed at INAF-Osservatorio Astronomico di Palermo. The PWDetect version used here is a modified one, able to detect sources in combined datasets, thus taking full advantage of the deep total exposure. The detection threshold was chosen such as to yield ten spurious detections in the field of view (FOV), for the given background counts. This is a more relaxed constraint than the more usual limit of one spurious detection per field, but is justified when the lowered threshold allows the detection of more than one hundred additional faint sources, as it was the case here or in the COUP Program's Orion data. This HEASARC table contains the list of 1,613 detected X-ray point sources and information about their optical and IR counterparts, where known. It does not contain the 275 additional candidate cluster members (where their candidacy was based on their having H-alpha or IR excesses) which lack X-ray counterparts and that were also listed in Table B.2 of the reference paper. This table was created by the HEASARC in December 2016 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/596/A82">CDS Catalog J/A+A/596/A82</a> file tableb.dat, which is the merger of tables B.1 (the list of 1,613 X-ray sources) and B.2 (the list of 1,888 optical and near-IR identifications of X-ray sources and of IR- and H-alpha-excess stars) from the reference paper, but excluding the 275 stars listed in the latter whose candidacy was based on their having H-alpha or IR excesses and which lack X-ray counterparts. # This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc6530cxo
- Title:
- NGC 6530 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC6530CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- In a deep 60 ks Chandra ACIS-I X-ray observation of the very young (~ 1.5 - 2.0 Myr) cluster NGC 6530 on 2001 Jun 18-19, the authors have detected 884 X-ray point sources and argue that a very large fraction of them (90%-95%) must be pre-main-sequence (PMS) cluster members, mostly low-mass stars. This is a significant enlargement of the known NGC 6530 stellar population with respect to previous optical studies, including H-alpha surveys. They identify 220 X-ray sources with catalogued stars down to V = 17, while most unidentified sources have fainter counterparts. Moreover, they find an infrared counterpart in the 2MASS (CDS. No. <II/246>) Catalog for 731 X-ray sources. The optically identified cluster X-ray sources are found in a band in the H-R diagram above the main sequence, in the locus of 0.5 - 1.5 Myr PMS stars, with masses down to 0.5 - 1.5 solar masses (M_sun). The pointing direction for the Chandra observation was the NGC 6530 cluster center at RA = 18^h 04^m 24.38^s, Dec = -24^o 21' 05.8" (J2000.0). The PWDetect algorithm found 884 X-ray point sources in the ACIS-I image above a detection significance threshold chosen to ensure only 1 spurious detection on the average. The Sung et al. (2000, AJ, 120, 333; <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/AJ/120/333">CDS Cat. <J/AJ/120/333></a>) = SCB Catalog of optical objects against which the X-ray point source list was compared doed not cover the easternmost 2.25' of the ACIS FOV (RAs later than 18^h 04^m 52^s), notice, which comprises about 13% of the ACIS FOV. There are 46 detected X-ray sources (5.2% of the total) in the area not covered by the SCB Catalog. A matching distance of 4 times the X-ray error radius or 2.0" (whichever is greater) was used to identify optical counterparts to the X-ray sources, after a systematic shift between the X-ray and optical positions of -0.4" and 1.84" in RA and declination, respectively, was applied. The authors estimate that as many as 28 of their 220 optical identifications may be spurious, preferentially those in the outer parts of the FOV where the positional uncertainties are larger. There are 8792 'good' 2MASS sources in the ACIS FOV. A matching distance of 4 times the X-ray error radius or 1.5" (whichever is greater) was used to identify 2MASS counterparts to the X-ray sources, after systematic corrections of 0.3" and 1.75" in RA and declination, respectively, were applied to the 'raw' X-ray positions. There are 13 cases where there are two possible IR counterparts to a single X-ray source, and 2 cases where there are three possible IR Counterparts to a single X-ray source. (Notice that, in such cases, this table contains multiple entries, one for each counterpart, and hence there are 901 entries compared to 884 X-ray sources.) The authors conclude that the plausible number of spurious X-ray-2MASS identifications is between 30 and 50. Overall, there remain 146 X-ray sources with no optical or IR identification. This table was created by the HEASARC in December 2006 based on CDS table J/ApJ/608/781, the file table1.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc2362cxo
- Title:
- NGC 2362 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC2362CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the results of an observation of the young cluster NGC 2362 in X-rays with Chandra ACIS-I in which 387 point X-ray sources, most of which are shown to be cluster members, were detected using PWDetect, a wavelet-based source detection algorithm, with a detection threshold chosen to ensure no more than one spurious detection in the entire ACIS FOV. The table lists all of the detected X-ray sources and their basic X-ray properties, as well as their proposed identifications with optical stars, using data from Moitinho et al. (2001ApJ...563L..73M; UBVRI photometry) and Dahm (2005, <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/AJ/130/1805">CDS Cat. <J/AJ/130/1805></a>; H-alpha data), as well as newer photometric data from Moitinho et al. (2005, in 'Cores to Clusters' [A&SSL, 324], 167). A matching position of less than 4 times the X-ray positional uncertainty of the X-ray source from PWDetect was used. Also included in the table is a classification of the optically-identified X-ray sources, based on their positions in the HR Diagram, which helps to separate rather clearly the cluster members from interloping field objects. This table was created by the HEASARC in March 2007 based on CDS table J/A+A/460/133 files table2.dat and table3.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc6357cxo
- Title:
- NGC 6357 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC6357CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This contains some of the results from the first high spatial resolution X-ray study of the massive star-forming region NGC 6357, which were obtained in a 38 ks Chandra/ACIS observation. Inside the brightest constituent of this large H II region complex is the massive open cluster Pismis 24. It contains two of the brightest and bluest stars known, yet remains poorly studied; only a handful of optically bright stellar members have been identified. The authors have investigated the cluster extent and initial mass function and detected ~800 X-ray sources with a limiting sensitivity of ~ 10<sup>30</sup> erg s<sup>-1</sup>: this provides the first reliable probe of the rich intermediate-mass and low-mass population of this massive cluster, increasing the number of known members from optical studies by a factor of ~ 50. The high-luminosity end (log L[2-8 keV] >= 30.3 erg s<sup>-1</sup>) of the observed X-ray luminosity function in NGC 6357 is clearly consistent with a power-law relation as seen in the Orion Nebula Cluster and Cepheus B, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. The long-standing L<sub>X</sub> ~ 10<sup>-7</sup> L<sub>bol</sub> correlation for O stars is confirmed. Twenty-four candidate O stars and one possible new obscured massive YSO or Wolf-Rayet star are presented. Many cluster members are estimated to be intermediate-mass stars from available infrared photometry (assuming an age of ~ 1 Myr), but only a few exhibit K-band excess. The authors report the first detection of X-ray emission from an evaporating gaseous globule at the tip of a molecular pillar; this source is likely a B0-B2 protostar. NGC 6357 was observed on 2004 July 9 with the Imaging Array of the Advanced CCD Imaging Spectrometer (ACIS-I) on board Chandra. Four front-illuminated (FI) CCDs form the ACIS-I, which covers a field of view (FOV) of ~ 17 by 17 arcminutes. The observation was made in the standard Timed Exposure, Very Faint mode, with 3.2 s integration time and 5 pixel by 5 pixel event islands. The total exposure time was 38 ks and the satellite roll angle was 289 degrees. The aim point was centered on the O3 If star Pis 24-1, the heart of the OB association Pismis 24. The Chandra observation ID is 4477. Data reduction started with filtering the Level 1 event list processed by the Chandra X-ray Center pipeline to recover an improved Level 2 event list. To improve absolute astrometry, X-ray positions of ACIS-I sources were obtained by running the wavdetect wavelet-based source detection algorithm within the Chandra Interactive Analysis of Observations (CIAO) package on the original Level 2 event list, using only the central 8 by 8 arcminutes of the field. The resulting X-ray sources were matched to the 2MASS point source catalog. The authors calculated the position offsets between 277 X-ray sources and their NIR counterparts and applied an offset of +0.02" in right ascension (R.A.) and -0.33" in declination to the X-ray coordinates. From an initial list of 910 potential X-ray sources, the authors rejected sources with a P<sub>B</sub> > 1% likelihood of being a background fluctuation. The trimmed source list includes 779 sources, with full-band (0.5 - 8.0 keV) net (background-subtracted) counts ranging from 1.7 to 1837 counts. The 779 valid sources were purposely divided by the authors into two lists: the 665 sources with P<sub>B</sub> < 0.1% make up the primary source list of highly reliable sources (Table 1 in the reference paper; sources with source_type = 'M' in this table), and the remaining 114 sources with P<sub>B</sub> >= 0.1% likelihood of being spurious background fluctuations were listed as tentative sources in Table 2 of the reference paper (source_type = 'T' in this table). The authors believe that most of these tentative sources are likely real detections. This table was created by the HEASARC in October 2007 based on the merger of the electronic versions of Tables 1 (Main Source Catalog) and 2 (Tentative Sources which were obtained from the ApJ website. To help distinguish from which original table entries in this Browse table come from, the HEASARC has created a parameter called source_type which is set to 'M' for sources from Table 1 and to 'T' for sources from Table 2. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc5866cxo
- Title:
- NGC 5866 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC5866CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- S0 galaxies are often thought to be passively evolved from spirals after star formation is quenched. To explore what is actually occurring in such galaxies, the authors conducted a multi-wavelength case study of NGC 5866 - a nearby edge-on S0 galaxy in a relatively isolated environment. This study shows strong evidence for dynamic activities in the interstellar medium, which are most likely driven by supernova explosions in the galactic disk and bulge. Understanding these activities can have strong implications for studying the evolution of such galaxies. The authors utilized Chandra, Hubble Space Telescope, and Spitzer data as well as ground-based observations to characterize the content, structure, and physical state of the medium and its interplay with the stellar component in NGC 5866. These reveal the presence of diffuse X-ray-emitting hot gas, which extends as far as 3.5 kpc away from the galactic plane and can be heated easily by Type Ia SNe in the bulge. The Chandra/ACIS observation of NGC 5866 was taken on 2002 November 14. The authors reprocessed the archived data for their study. See Figure 1 in the reference paper for the Chandra/ACIS-S image of NGC 5866 in the 0.3-7 keV band. This table contains the detected X-ray point sources listed in table 2 of this paper. This table was created by the HEASARC in May 2018 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/706/693">CDS Catalog J/ApJ/706/693</a> file table2.dat, the list of detected X-ray sources in the Chandra observation of NGC 5866. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc6791cxo
- Title:
- NGC 6791 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC6791CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains some of the results from the first X-ray study of NGC 6791, one of the oldest open clusters known (8 Gyr). This Chandra observation was aimed at uncovering the population of close interacting binaries down to an X-ray luminosity (L<sub>X</sub>) of ~1 x 10<sup>30</sup> erg/s (0.3-7 keV). The authors detect 86 sources within 8 arcminutes of the cluster center, including 59 inside the half-mass radius of 4.42 arcminutes. centered on 19<sup>h</sup> 20<sup>m</sup> 53<sup>s</sup>, +37<sup>o</sup> 46' 18" (J2000.0). They identify 20 sources with proper-motion cluster members, which are a mix of cataclysmic variables (CVs), active binaries (ABs), and binaries containing sub-subgiants. With follow-up optical spectroscopy, the authors confirm the nature of one CV. They also discover one new, X-ray variable candidate CV with Balmer and He II emission lines in its optical spectrum; this is the first X-ray-selected CV in an open cluster. The number of CVs per unit mass is consistent with the field, suggesting that the 3-4 CVs observed in NGC 6791 are primordial. The authors compare the X-ray properties of NGC 6791 with those of a few old open clusters (NGC 6819, M67) and globular clusters (47 Tuc, NGC 6397). It is puzzling that the number of ABs brighter than 1 x 10<sup>30</sup> erg/s normalized by cluster mass is lower in NGC 6791 than in M 67 by a factor ~3-7. CVs, ABs, and sub-subgiants brighter than 1 x 10<sup>30</sup> erg/s are under-represented per unit mass in the globular clusters compared to the oldest open clusters, and this accounts for the lower total X-ray luminosity per unit mass of the former. This indicates that the net effect of dynamical encounters may be the destruction of even some of the hardest (i.e., X-ray-emitting) binaries. The authors observed NGC 6791 with the Advanced CCD Imaging Spectrometer (ACIS) on Chandra from 2004 July 1 20:51 UTC until July 2 10:49 UTC for a total exposure time of 48.2ks (ObsID 4510). They obtained low-resolution spectra of candidate optical counterparts to guide the classification of the X-ray sources. A total of 16 candidate counterparts brighter than V ~18.3 were observed with the FAST long-slit spectrograph on the 1.5m Tillinghast telescope on Mt. Hopkins on nine nights between 2005 June 7 to September 2 (coverage from 3480 to 7400 Angstrom and a 3 Angstrom resolution). Candidate optical counterparts fainter than V ~17 were observed with the fiber-fed multi-object spectrograph Hectospec on the 6.5m Multi-Mirror Telescope. A total of 16 candidate counterparts were observed on the nights of 2005 May 13 and July 4-6 (spectra that cover 3700 to 9150 Angstrom with a 6-Angstrom resolution). The authors performed source detections in broad (0.3-7.0 keV), soft (0.3-2.0 keV) and hard (2.0-7.0 keV) energy bands, also used in their Chandra study of M 67 (van den Berg et al. 2004, A&A, 418. 509), so as to facilitate comparison. The CIAO detection routine wavdetect was run for scales of 1.0 to 11.3 pixels, in steps increasing by a factor of sqrt(2), with the larger scales appropriate for large off-axis angles where the point-spread function (PSF) becomes significantly broader. The authors computed exposure maps for the response at 1 keV to account for spatial variations of the sensitivity. The wavdetect detection threshold was set to 10<sup>-6</sup>, from which the authors expect two spurious detections per detection scale (so 16 spurious detections in total) in the area that they consider here. Combination of the broad, soft, and hard-band source lists results in a master catalog of 86 distinct sources within 8 arcmin of the cluster center, of which 59 lie inside the half-mass radius r<sub>h</sub>. To investigate the validity of the sources, the authors also ran wavdetect with a threshold of 10<sup>-7</sup> or an expected number of spurious sources of 1.6. The 14 sources not detected in this run are marked with a value of the source_flag parameter of 'T' in this table (replacing the '*' symbol used in the original table). This table was created by the HEASARC in August 2015 based on the <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/770/98">CDS Catalog J/ApJ/770/98</a> files table1.dat and table2.dat. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc300cxo
- Title:
- NGC 300 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC300CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- This table contains the source catalog from a new Chandra ACIS-I observation of the nearby (2.0 Mpc) SA(s)d spiral galaxy NGC 300 which was obtained as part of the Chandra Local Volume Survey (CLVS). This 63-ks exposure covers ~88% of the D<sub>25</sub> isophote (R ~ 6.3 kpc) and yields a catalog of 95 X-ray point sources detected at high significance down to a limiting unabsorbed 0.35-8 keV luminosity of ~ 10<sup>36</sup> erg/s. Sources were cross-correlated with a previous XMM-Newton catalog, and the authors find 75 "X-ray transient candidate" sources that were detected by one observatory, but not the other. They derive an X-ray scale length of 1.7 +/- 0.2 kpc and a recent star formation rate of 0.12 M<sub>sun</sub>/yr in excellent agreement with optical observations. Deep, multi-color imaging from the Hubble Space Telescope, covering ~ 32% of this Chandra field, was used to search for optical counterparts to the X-ray sources, and the authors have developed a new source classification scheme to determine which sources are likely X-ray binaries, supernova remnants, and background active galactic nucleus candidates. In the reference paper, the authors present the X-ray luminosity functions (XLFs) at different X-ray energies, and find the total NGC 300 X-ray point-source population to be consistent with other late-type galaxies hosting young stellar populations (<~ 50 Myr). They find that the XLF of sources associated with older stellar populations has a steeper slope than the XLF of X-ray sources coinciding with young stellar populations, consistent with theoretical predictions. NGC 300 was observed on 2010 September 25 for 63 ks using ACIS-I during the Chandra X-Ray Observatory Cycle 12, observation ID 12238. The source detection strategy that was used is described in Section 2.3 of the reference paper. ACIS-Extract (AE) was run a final time on the source list that was produces after an initial run of wavdetect followed by several iterations of AE, and the Poisson probability of not being a source (pns) value was computed in each of the following nine energy bands: 0.5 - 8.0, 0.5 - 2.0, 2.0 - 8.0, 0.5 - 1.0, 1.0 - 2.0, 2.0 - 4.0, 4.0 - 8.0, 0.35 - 1.0 and 0.35 - 8.0 keV. To be included in the final NGC 300 catalog, a source was required to have a pns value less than 4 x 10<sup>-6</sup> in any of the nine energy bands; if only the 0.35 - 8 keV band were considered, ~4% of significant sources would have been lost. The final CLVS source catalog for NGC 300 contains 95 sources. This table was initially created by the HEASARC in September 2014 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/ApJ/758/15/">CDS Catalog J/ApJ/758/15/</a> files table4.dat, table5.dat, table6.dat and table7.dat containing the X-ray properties of the 95 Chandra point sources found in this study. The information on the optical counterparts to (some of) the Chandra X-ray sources and on the X-ray point source classification (presented in Tables 16 and 17, respectively, of the reference paper) is not included herein. It was updated in September 2015 to include the unabsorbed 0.35-8.0 keV energy fluxes (in the parameter herein called b4_flux) from the second reference paper. This is a service provided by NASA HEASARC .
- ID:
- ivo://nasa.heasarc/ngc1893cxo
- Title:
- NGC 1893 Chandra X-Ray Point Source Catalog
- Short Name:
- NGC1893CXO
- Date:
- 09 May 2025
- Publisher:
- NASA/GSFC HEASARC
- Description:
- The outer Galaxy, where the environmental conditions are different from the solar neighbourhood, is a laboratory in which it is possible to investigate the dependence of the star formation process on the environmental parameters. The authors investigate the X-ray properties of NGC 1893, a young cluster (~ 1 - 2 Myr) in the outer part of the Galaxy (galactic radius >= 11 kpc), where they expect differences in the disk evolution and in the mass distribution of the stars, so as to explore the X-ray emission of its members and compare it with that of young stars in star forming regions near to the Sun. The authors analyze 5 deep Chandra ACIS-I observations with a total exposure time of 450 ks. Source events of the 1021 X-ray sources have been extracted with the IDL-based routine ACIS-Extract. Using spectral fitting and quantile analysis of X-ray spectra, they derive X-ray luminosities and compare the respective properties of Class II and Class III members. They also evaluate the variability of sources using the Kolmogorov-Smirnov test and identify flares in the lightcurves. The X-ray luminosity of NGC 1893 X-ray members is in the range 10<sup>29.5</sup> - 10<sup>31.5</sup> erg s<sup>-1</sup>. Diskless stars are brighter in X-rays than disk-bearing stars, given the same bolometric luminosity. The authors find that 34% of the 1021 lightcurves appear variable and that they show 0.16 flares per source, on the average. Comparing their results with those relative to the Orion Nebula Cluster, they find that, after accounting for observational biases, the X-ray properties of NGC 1893 and the Orion stars are very similar. The authors conclude that the X-ray properties of stars in NGC 1893 are not affected by the environment and that the stellar population in the outer Galaxy may have the same coronal properties as nearby star-forming regions. The X-ray luminosity properties and the X-ray luminosity function appear to be universal and can therefore be used for estimating distances and for determining stellar properties. This table was created by the HEASARC in March 2012 based on <a href="https://cdsarc.cds.unistra.fr/ftp/cats/J/A+A/539/A74">CDS Catalog J/A+A/539/A74</a> file catalog.dat, the catalog of 1021 X-ray sources detected towards NGC 1893. This is a service provided by NASA HEASARC .