- ID:
- ivo://CDS.VizieR/J/AJ/157/35
- Title:
- The population of pulsating variable stars in Sextans
- Short Name:
- J/AJ/157/35
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A large extension of the Sextans dwarf spheroidal galaxy, 7 deg^2^, has been surveyed for variable stars using the Dark Energy Camera at the Blanco Telescope at Cerro Tololo Inter-American Observatory, Chile. We report seven anomalous Cepheids, 199 RR Lyrae stars, and 16 dwarf Cepheids in the field. This is only the fifth extragalactic system in which dwarf Cepheids have been systematically searched. Henceforth, the new stars increase the census of stars coming from different environments that can be used to asses the advantages and limitations of using dwarf Cepheids as standard candles in populations for which the metallicity is not necessarily known. The dwarf Cepheids found in Sextans have a mean period of 0.066 day and a mean g amplitude of 0.87 mag. They are located below the horizontal branch, spanning a range of 0.8 mag: 21.9<g<22.7. The number of dwarf Cepheids in Sextans is low compared with other galaxies such as Carina, which has a strong intermediate-age population. On the other hand, the number and ratio of RR Lyrae stars to dwarf Cepheids are quite similar to those of Sculptor, a galaxy which, as Sextans, is dominated by an old stellar population. The dwarf Cepheid stars found in Sextans follow a well-constrained period-luminosity relationship with an rms=0.05 mag in the g band, which was set up by anchoring to the distance modulus given by the RR Lyrae stars. Although the majority of the variable stars in Sextans are located toward the center of the galaxy, we have found two RR Lyrae stars and one anomalous Cepheid in the outskirts of the galaxy that may be extratidal stars and suggest that this galaxy may be undergoing tidal destruction. These possible extratidal variable stars share the same proper motions as Sextans, as seen by recent Gaia measurements. Two additional stars that we initially classified as foreground RR Lyrae stars may actually be other examples of Sextans extratidal anomalous Cepheids, although radial velocities are needed to prove that scenario.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/155/38
- Title:
- The rotation of M dwarfs observed by APOGEE
- Short Name:
- J/AJ/155/38
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results of a spectroscopic analysis of rotational velocities in 714 M-dwarf stars observed by the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template-fitting technique to estimate v sin i while simultaneously estimating log g, [M/H], and T_eff_. We conservatively estimate that our detection limit is 8 km/s. We compare our results to M-dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M4 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases where the measured v sin i and rotation period are physically inconsistent, requiring sin i>1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M4 transition by a factor of ~2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bimodal distribution in rotation that is seen in photometric surveys.
- ID:
- ivo://CDS.VizieR/J/AJ/156/49
- Title:
- The solar neighborhood. XLIII. New nearby stars
- Short Name:
- J/AJ/156/49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have conducted a novel search of most of the southern sky for nearby red dwarfs having low proper motions, with specific emphasis on those with {mu}<0.18"/yr, the lower cutoff of Luyten's classic proper-motion catalog. We used a tightly constrained search of the SuperCOSMOS database and a suite of photometric distance relations for photographic BRI and 2MASS JHK_s_ magnitudes to estimate distances to more than 14 million red dwarf candidates. Here we discuss 29 stars in 26 systems estimated to be within 25 pc, all of which have {mu}<0.18"/yr, that we have investigated using milliarcsecond astrometry, VRI photometry, and low-resolution spectroscopy. In total, we present the first parallaxes of 20 star systems, 9 of which are within 25 pc. We have additionally identified 14 young M dwarfs, of which 3 are new members of the nearby young moving groups, and 72 new giants, including two new carbon stars. We also present the entire catalog of 1215 sources we have identified by this means.
- ID:
- ivo://CDS.VizieR/J/AJ/155/265
- Title:
- The solar neighborhood. XLIV. RECONS discoveries
- Short Name:
- J/AJ/155/265
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long-term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems-including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf-have trigonometric parallaxes greater than 100 mas, with errors of 0.4-2.4 mas in all but one case. We provide updated astrometric, photometric (VRIJHK magnitudes), spectral type, and multiplicity information here. Among these are 14 systems that are new entries to the 10 pc sample, including the first parallaxes for 9 systems and new values for 5 systems that had previous parallaxes with errors greater than 10 mas or values placing them beyond 10 pc. We also provide new data for 22 systems known to lie within 10 pc and 9 systems reported to be closer than that horizon but for which new parallaxes place them further away, bringing the total to 75 systems. The 44 systems added by RECONS comprise one of every 7 systems known within 10 pc. We illustrate the evolution of the 10 pc sample from the 191 systems known when the final Yale Parallax Catalog was published in 1995 to the 317 systems known today. Even so close to the Sun, additional discoveries of white, red, and brown dwarfs are possible, both as primaries and secondaries, although we estimate that at least 90% of the stellar systems closer than 10 pc have now been identified.
- ID:
- ivo://CDS.VizieR/J/AJ/161/172
- Title:
- The Solar Neighborhood. XLVII. Mdwarfs with STIS
- Short Name:
- J/AJ/161/172
- Date:
- 18 Jan 2022
- Publisher:
- CDS
- Description:
- We use HST/STIS optical spectroscopy of 10 M-dwarfs in five closely separated binary systems to test models of M-dwarf structure and evolution. Individual dynamical masses ranging from 0.083 to 0.405M{sun} for all stars are known from previous work. We first derive temperature, radius, luminosity, surface gravity, and metallicity by fitting the BT-Settl atmospheric models. We verify that our methodology agrees with empirical results from long-baseline optical interferometry for stars of similar spectral types. We then test whether or not evolutionary models can predict those quantities given the stars' known dynamical masses and the conditions of coevality and equal metallicity within each binary system. We apply this test to five different evolutionary model sets: the Dartmouth models, the MESA/MIST models, the models of Baraffe et al., the PARSEC models, and the YaPSI models. We find marginal agreement between evolutionary model predictions and observations, with few cases where the models respect the condition of coevality in a self-consistent manner. We discuss the pros and cons of each family of models and compare their predictive power.
- ID:
- ivo://CDS.VizieR/J/AJ/160/215
- Title:
- The solar neighborhood.XLVI. New M dwarf binaries
- Short Name:
- J/AJ/160/215
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We use 20yr of astrometric data from the REsearch Consortium On Nearby Stars (RECONS) program on the Cerro Tololo Inter-American Observatory/SMARTS 0.9m telescope to provide new insight into multiple star systems in the solar neighborhood. We provide new and updated parallaxes for 210 systems and derive nine high-quality astrometric orbits with periods of 2.49-16.63yr. Using a total of 542 systems parallaxes from RECONS, we compare systems within 25pc to Gaia DR2 to define criteria for selecting unresolved astrometric multiples from the DR2 results. We find that three out of four unresolved multistar red dwarf systems within 25pc in DR2 have parallax_error >=0.32mas, astrometric_gof_al>=56, astrometric_excess-noise_sig>=108.0, ruwe>=2.0, and parallaxes more than ~10% different from the long-term RECONS results. These criteria have broad applications to any work targeting nearby stars, from studies seeking binary systems to efforts targeting single stars for planet searches.
- ID:
- ivo://CDS.VizieR/J/A+AS/125/497
- Title:
- Theta Vir and 109 Vir uvby photometry
- Short Name:
- J/A+AS/125/497
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Differential Stroemgren uvby photometric observations from the Four College Automated Photoelectric Telescope are used to examine the possible variability of the spectrophotometric standards {theta} Vir and 109 Vir. No evidence is found for variability within a season of observation. Small year to year differences are most likely due to unaccounted for extinction changes.
- ID:
- ivo://CDS.VizieR/J/AJ/161/65
- Title:
- THYME. IV. 3 Exoplanets around TOI-451 B
- Short Name:
- J/AJ/161/65
- Date:
- 11 Mar 2022
- Publisher:
- CDS
- Description:
- Young exoplanets can offer insight into the evolution of planetary atmospheres, compositions, and architectures. We present the discovery of the young planetary system TOI-451 (TIC257605131, GaiaDR24844691297067063424). TOI-451 is a member of the 120Myr old Pisces-Eridanus stream (Psc-Eri). We confirm membership in the stream with its kinematics, its lithium abundance, and the rotation and UV excesses of both TOI451 and its wide-binary companion, TOI-451B (itself likely an M-dwarf binary). We identified three candidate planets transiting in the Transiting Exoplanet Survey Satellite data and followed up the signals with photometry from Spitzer and ground-based telescopes. The system comprises three validated planets at periods of 1.9, 9.2, and 16days, with radii of 1.9, 3.1, and 4.1 R, respectively. The host star is near-solar mass with V=11.0 and H=9.3 and displays an infrared excess indicative of a debris disk. The planets offer excellent prospects for transmission spectroscopy with the Hubble Space Telescope and the James Webb Space Telescope, providing the opportunity to study planetary atmospheres that may still be in the process of evolving.
- ID:
- ivo://CDS.VizieR/J/AJ/162/114
- Title:
- Times & durations in Kepler-80 planetary system
- Short Name:
- J/AJ/162/114
- Date:
- 16 Mar 2022 00:10:21
- Publisher:
- CDS
- Description:
- Since the launch of the Kepler space telescope in 2009 and the subsequent K2 mission, hundreds of multiplanet systems have been discovered. The study of such systems, both as individual systems and as a population, leads to a better understanding of planetary formation and evolution. Kepler-80, a K dwarf hosting six super-Earths, was the first system known to have four planets in a chain of resonances, a repeated geometric configuration. Transiting planets in resonant chains can enable us to estimate not only the planets' orbits and sizes but also their masses. Since the original resonance analysis and TTV fitting of Kepler-80, a new planet has been discovered whose signal likely altered the measured masses of the other planets. Here, we determine masses and orbits for all six planets hosted by Kepler-80 by direct forward photodynamical modeling of the light curve of this system. We then explore the resonant behavior of the system. We find that the four middle planets are in a resonant chain, but that the outermost planet only dynamically interacts in ~14% of our solutions. We also find that the system and its dynamic behavior are consistent with in situ formation and compare our results to two other resonant chain systems, Kepler-60 and TRAPPIST-1.
- ID:
- ivo://CDS.VizieR/J/AJ/160/22
- Title:
- TOI-1235 Radial velocities & optical spectroscopy
- Short Name:
- J/AJ/160/22
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Small planets on close-in orbits tend to exhibit envelope mass fractions of either effectively zero or up to a few percent depending on their size and orbital period. Models of thermally driven atmospheric mass loss and of terrestrial planet formation in a gas-poor environment make distinct predictions regarding the location of this rocky/nonrocky transition in period-radius space. Here we present the confirmation of TOI-1235b (P=3.44days, r_p_=1.738_-0.076_^+0.087^R_{Earth}_), a planet whose size and period are intermediate between the competing model predictions, thus making the system an important test case for emergence models of the rocky/nonrocky transition around early M dwarfs (R_s_=0.630{+/-}0.015R_{sun}_, M_s_=0.640{+/-}0.016M_{sun}_). We confirm the TESS planet discovery using reconnaissance spectroscopy, ground-based photometry, high- resolution imaging, and a set of 38 precise radial velocities (RVs) from HARPS-N and HIRES. We measure a planet mass of 6.91_-0.85_^+0.75^M_{Earth}_, which implies an iron core mass fraction of 20_-12_^+15^% in the absence of a gaseous envelope. The bulk composition of TOI-1235b is therefore consistent with being Earth-like, and we constrain an H/He envelope mass fraction to be <0.5% at 90% confidence. Our results are consistent with model predictions from thermally driven atmospheric mass loss but not with gas-poor formation, suggesting that the former class of processes remains efficient at sculpting close-in planets around early M dwarfs. Our RV analysis also reveals a strong periodicity close to the first harmonic of the photometrically determined stellar rotation period that we treat as stellar activity, despite other lines of evidence favoring a planetary origin (P=21.8_-0.8_^+0.9^days, m_p_sini=13.0_-5.3_^+3.8^M_{Earth}_) that cannot be firmly ruled out by our data.