We present new multicolor photometry for RZ Draconis, observed in 2009 at the Xinglong Station of the National Astronomical Observatories of China. By using the updated version of the Wilson-Devinney Code, the photometric-spectroscopic elements were deduced from new photometric observations and published radial velocity data.
Searching for Small Circumbinary Planets. I. STANLEY
Short Name:
J/AJ/162/84
Date:
16 Mar 2022 11:40:27
Publisher:
CDS
Description:
No circumbinary planets have been discovered smaller than 3R{Earth}, yet planets of this small size comprise over 75% of the discoveries around single stars. The observations do not prove the nonexistence of small circumbinary planets; rather, they are much harder to find than around single stars because their transit timing variations are much larger than the transit durations. We present Stanley, an automated algorithm to find small circumbinary planets. It employs custom methods to detrend eclipsing binary light curves and stack shallow transits of variable duration and interval using N-body integrations. Applied to the Kepler circumbinaries, we recover all known planets, including the three planets of Kepler-47, and constrain the absence of additional planets of similar or smaller size. We also show that we could have detected <3R{Earth} planets in half of the known systems. Our work will ultimately be applied to a broad sample of eclipsing binaries to (hopefully) produce new discoveries and derive a circumbinary size distribution that can be compared to that for single stars.
Semidetached eclipsing systems provide a unique opportunity to derive the basic properties of interacting binaries. The goal of this work is to collect and to make use of data on semidetached systems with available light and radial velocity curve solutions. I have compiled the most comprehensive list to date, of 119 semidetached double-lined eclipsing binaries, containing the orbital parameters and physical parameters of the components. I consider the classification of semidetached binaries and discuss gaps between various classes in the Hertzspung-Russell diagram. I list systems with component parameters that are inverted and briefly discuss their evolutionary state.
The catalog contains two parts: 96 well known semidetached eclipsing binaries with known photometric and spectroscopic orbits (table1.dat), and 136 semidetached eclipsing binaries with known photometrical orbital elements and unknown spectroscopic orbit (table2.dat).
We review the eclipse time variations exhibited by seven sdB eclipsing binaries to establish if data collected over the last 2 decades can reliably predict the presence of two or more circumbinary bodies.
Short period spec. & EBs (LPSEB) from LAMOST & PTF
Short Name:
J/ApJS/249/31
Date:
10 Dec 2021 16:35:10
Publisher:
CDS
Description:
Binaries play key roles in determining stellar parameters and exploring stellar evolution models. We build a catalog of 88 eclipsing binaries with spectroscopic information, taking advantage of observations from both the Large Sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) and the Palomar Transient Factory (PTF) surveys. A software pipeline is constructed to identify binary candidates by examining their light curves. The orbital periods of binaries are derived from the Lomb-Scargle method. The key distinguishing features of eclipsing binaries are recognized by a new filter, Flat Test. We classify the eclipsing binaries by applying a Fourier analysis on the light curves. Among all the binary stars, 13 binaries are identified as eclipsing binaries for the first time. The catalog contains the following information: the position, primary eclipsing magnitude and time, eclipsing depth, the number of photometry and radial velocity observations, largest radial velocity difference, binary type, the effective temperature of the observable star Teff, and surface gravity of the observable star logg. The false-positive probability is calculated by using both a Monte Carlo simulation and real data from the Sloan Digital Sky Survey Stripe 82 Standard Catalog. The binaries in the catalog are mostly with a period of less than one day. The period distribution shows a 0.22 day cutoff, which is consistent with the low probability of an eclipsing binary rotating with such a period.
We introduce the BEBOP radial velocity survey for circumbinary planets. We initiated this survey using the CORALIE spectrograph on the Swiss Euler Telescope at La Silla, Chile. An intensive four year observing campaign commenced in 2013, targeting 47 single lined eclipsing binaries drawn from the EBLM survey for low mass eclipsing binaries. Our specific use of binaries with faint M dwarf companions avoids spectral contamination, providing observing conditions akin to single stars. By combining new BEBOP observations with existing ones from the EBLM programme, we report on the results of 1519 radial velocity measurements over timespans as long as eight years. For the best targets we are sensitive to planets down to 0.1 Jupiter masses, and our median sensitivity is 0.4 Jupiter masses. In this initial survey we do not detect any planetary mass companions. Nonetheless, we present the first constraints on the abundance of circumbinary companions, as a function of mass and period. A comparison of our results to Kepler's detections indicates a dispersion of planetary orbital inclinations less than ~10{deg}.
We derive masses and radii for both components in the single-lined eclipsing binary HAT-TR-205-013, which consists of an F7 V primary and a late M dwarf secondary. The system's period is short, P=2.230736+/-0.000010 days, with an orbit indistinguishable from circular, e=0.012+/-0.021. We demonstrate generally that the surface gravity of the secondary star in a single-lined binary undergoing total eclipses can be derived from characteristics of the light curve and spectroscopic orbit.