- ID:
- ivo://CDS.VizieR/J/AJ/157/87
- Title:
- Times of minima for 21 early-type SMC eccentric EBs
- Short Name:
- J/AJ/157/87
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the apsidal motion and light-curve analyses of 21 eccentric eclipsing binaries located in the Small Magellanic Cloud. Most of these systems have never been studied before, hence their orbital and physical properties as well as the apsidal motion parameters are given here for the first time. All the systems are of early spectral type, having orbital periods up to 4 days. The apsidal motion periods were derived to be from 7.2 to 200 yr (OGLE-SMC-ECL-2194 having the shortest apsidal period among known main-sequence systems). The orbital eccentricities are usually rather mild (median of about 0.06), the maximum eccentricity being 0.33. For the period analysis using O-C diagrams of eclipse timings, in total 951 minima were derived from survey photometry as well as our new data. Moreover, six systems show some additional variation in their O-C diagrams, which should indicate the presence of hidden additional components in them. According to our analysis these third-body variations have periods from 6.9 to 22 yr.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AcA/62/97
- Title:
- Times of minima for 13 eclipsing binaries
- Short Name:
- J/AcA/62/97
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Main aim of this paper is the first light curve and apsidal motion analysis of thirteen eccentric eclipsing binaries and determination of their basic physical properties. All of the systems were studied by the method of period analysis of times of minima and the light curve analysis. Many new times of minima were derived and collected from the data obtained by the automatic, robotic or satellite telescopes. This allows us to study the apsidal motion in these systems in detail for the first time. From the light curve analysis the first rough estimations of the physical properties of these systems were obtained.
- ID:
- ivo://CDS.VizieR/J/AJ/150/183
- Title:
- Times of minima for 18 LMC eclipsing binaries
- Short Name:
- J/AJ/150/183
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O - C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of these systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M_{sun}_ for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.
- ID:
- ivo://CDS.VizieR/J/A+A/572/A71
- Title:
- Times of minima for 18 SMC eclipsing binaries
- Short Name:
- J/A+A/572/A71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Danish 1.54-meter telescope at the La Silla observatory was used for photometric monitoring of selected eccentric eclipsing binaries located in the Small Magellanic Cloud. The new times of minima were derived for these systems, which are needed for accurate determination of the apsidal motion. Moreover, many new times of minima were derived from the photometric databases OGLE and MACHO. Eighteen early-type eccentric-orbit eclipsing binaries were studied. Their O-C diagrams of minima timings were analysed and the parameters of the apsidal motion were obtained. The light curves of these eighteen binaries were analysed using the program PHOEBE, giving the light curve parameters. For several systems, the additional third light also was detected.
- ID:
- ivo://CDS.VizieR/J/A+A/558/A71
- Title:
- Times of minima for 1SWASP J234401.81-212229.1
- Short Name:
- J/A+A/558/A71
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report our investigation of 1SWASP J234401.81-212229.1, a variable with a 18461.6s period. After identification in a 2011 search of the SuperWASP archive for main-sequence eclipsing binary candidates near the distribution's short-period limit of ~0.20d, it was measured to be undergoing rapid period decrease in our earlier work, though later observations supported a cyclic variation in period length. Spectroscopic data obtained in 2012 with the Southern African Large Telescope did not, however, support the interpretation of the object as a normal eclipsing binary. Here, we consider three possible explanations consistent with the data: a single-star oblique rotator model in which variability results from stable cool spots on opposite magnetic poles; a two-star model in which the secondary is a brown dwarf; and a three-star model involving a low-mass eclipsing binary in a hierarchical triple system. We conclude that the latter is the most likely model.
- ID:
- ivo://CDS.VizieR/J/other/IBVS/5502
- Title:
- Times of minima of eclipsing binaries in 2003
- Short Name:
- J/other/IBVS/550
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Times of minima for a number of neglected eclipsing binaries are presented.
- ID:
- ivo://CDS.VizieR/J/AJ/147/98
- Title:
- Times of minimum light for EQ Tau
- Short Name:
- J/AJ/147/98
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- New photometric data of EQ Tau observed in 2010 and 2013 are presented. Light curves obtained in 2000 and 2004 by Yuan & Qian and 2001 by Yang & Liu, together with our two newly determined sets of light curves, were analyzed using the Wilson-Devinney code. The five sets of light curves exhibit very obvious variations, implying that the light curves of EQ Tau show a strong O'Connell effect. We found that EQ Tau is an A-type shallow contact binary with a contact degree of f=11.8%; variable dark spots on the primary component of EQ Tau were also observed. Using 10 new times of minimum light, together with those collected from the literature, the orbital period change of EQ Tau was analyzed. We found that its orbital period includes a secular decrease (dP/dt=-3.63x10^-8^days/yr) and a cyclic oscillation (A_3_=0.0058 days and P_3_=22.7 yr). The secular increase of the period can be explained by mass transfer from the more massive component to the less massive one or/and angular momentum loss due to a magnetic stellar wind. The Applegate mechanism cannot explain the cyclic orbital period change. A probable transit-like event was observed in 2010. Therefore, the cyclic orbital period change of EQ Tau may be due to the light time effect of a third body.
- ID:
- ivo://CDS.VizieR/J/AJ/148/96
- Title:
- Times of minimum light for IR Cas
- Short Name:
- J/AJ/148/96
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The first photometric analysis of IR Cas was carried out based on the new observed BVRI light curves. The symmetric light curves and nearly flat secondary minimum indicate that very precise photometric results can be determined. We found that IR Cas is a near contact binary with the primary component filling its Roche lobe. An analysis of the O-C diagram based on all available times of minimum light reveals evidence for a periodic change with a semi-amplitude of 0.0153days and a period of 39.7yr superimposed on a secular decrease at a rate of dp/dt=-1.28(+/-0.09)x10^-7^days/yr. The most reasonable explanation for the periodic change is the light time-travel effect due to a third body. The period decrease may be caused by mass transfer from the primary component to the secondary. With the decreasing period, IR Cas would eventually evolve into a contact system.
- ID:
- ivo://CDS.VizieR/J/AJ/149/120
- Title:
- Times of minimum light for TY UMa
- Short Name:
- J/AJ/149/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- TY UMa is an F-type eclipsing binary star. Four-color light curves and radial velocities of this system were presented and simultaneously analyzed using the W-D code. It is found that TY UMa is a W-subtype shallow contact binary system (f=13.4%) with a mass ratio of q=2.523. In order to explain the asymmetric light curve of this binary, a dark spot on the less massive component was employed. Our newly determined 31 times of minimum light, including those collected from the literature, have been used to analyze orbital period changes of TY UMa. The complicated period variation could be sorted into a secular period increase at a rate of d_p_/d_t_=+5.18(+/-0.21)x10^-7^days/yr, a 51.7yr periodic modulation (A_3_=0.0182days), and a very small amplitude cyclic oscillation with a period of 10.0yr (A_4_=0.0015days). The long-term increase of the period can be explained by mass transfer from the less massive component to the more massive one. The Applegate mechanism may impossibly explain the two cyclic components in the period. The two cyclic variations are very likely caused by the light travel time effect of third and fourth components, suggesting that TY UMa is a quadruple system.
- ID:
- ivo://CDS.VizieR/J/MNRAS/437/2831
- Title:
- 4 transiting F-M binary systems
- Short Name:
- J/MNRAS/437/2831
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four transiting F-M binary systems with companions between 0.1 and 0.2M_{sun}_ in mass by the HATSouth survey. These systems have been characterized via a global analysis of the HATSouth discovery data, combined with high-resolution radial velocities and accurate transit photometry observations. We determined the masses and radii of the component stars using a combination of two methods: isochrone fitting of spectroscopic primary star parameters and equating spectroscopic primary star rotation velocity with spin-orbit synchronization. These new very low mass companions are HATS550-016B (0.110_-0.006_^+0.005^M_{sun}_, 0.147_-0.004_^+0.003^R_{sun}_), HATS551-019B (0.17_-0.01_^+0.01^M_sun}_, 0.18_-0.01_^+0.01^R_{sun}_), HATS551-021B (0.132_-0.005_^+0.014^M_sun}_, 0.154_-0.008_^+0.006^R_{sun}_) and HATS553-001B (0.20_-0.02_^+0.01^M_sun}_, 0.22_-0.01_^+0.01^R_{sun}_). We examine our sample in the context of the radius anomaly for fully convective low-mass stars. Combining our sample with the 13 other well-studied very low mass stars, we find a tentative 5 percent systematic deviation between the measured radii and theoretical isochrone models.