- ID:
- ivo://CDS.VizieR/J/ApJ/813/78
- Title:
- z=4.5 and z=5.7 LAEs properties with Spitzer
- Short Name:
- J/ApJ/813/78
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the results from a stellar population modeling analysis of a sample of 162 z=4.5 and 14 z=5.7 Ly{alpha} emitting galaxies (LAEs) in the Bootes field, using deep Spitzer/IRAC data at 3.6 and 4.5 {mu}m from the Spitzer Ly{alpha} Survey, along with Hubble Space Telescope NICMOS and WFC3 imaging at 1.1 and 1.6 {mu}m for a subset of the LAEs. This represents one of the largest samples of high-redshift LAEs imaged with Spitzer IRAC. We find that 30/162 (19%) of the z=4.5 LAEs and 9/14 (64%) of the z=5.7 LAEs are detected at >=3{sigma} in at least one IRAC band. Individual z=4.5 IRAC-detected LAEs have a large range of stellar mass, from 5x10^8^-10^11^ M_{sun}_. One-third of the IRAC-detected LAEs have older stellar population ages of 100 Myr^-1^ Gyr, while the remainder have ages <100 Myr. A stacking analysis of IRAC-undetected LAEs shows this population to be primarily low mass (8-20x10^8^ M_{sun}_) and young (64-570 Myr). We find a correlation between stellar mass and the dust-corrected ultraviolet-based star formation rate (SFR) similar to that at lower redshifts, in that higher mass galaxies exhibit higher SFRs. However, the z=4.5 LAE correlation is elevated 4-5 times in SFR compared to continuum-selected galaxies at similar redshifts. The exception is the most massive LAEs which have SFRs similar to galaxies at lower redshifts suggesting that they may represent a different population of galaxies than the traditional lower-mass LAEs, perhaps with a different mechanism promoting Ly{alpha} photon escape.
« Previous |
271 - 273 of 273
|
Next »
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/822/42
- Title:
- z~3.3 star-forming galaxies NIR spectra
- Short Name:
- J/ApJ/822/42
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We study the relationship between stellar mass, star formation rate (SFR), ionization state, and gas-phase metallicity for a sample of 41 normal star-forming galaxies at 3<~z<~3.7. The gas-phase oxygen abundance, ionization parameter, and electron density of ionized gas are derived from rest-frame optical strong emission lines measured on near-infrared spectra obtained with Keck/Multi-Object Spectrograph for Infra-Red Exploration. We remove the effect of these strong emission lines in the broadband fluxes to compute stellar masses via spectral energy distribution fitting, while the SFR is derived from the dust-corrected ultraviolet luminosity. The ionization parameter is weakly correlated with the specific SFR, but otherwise the ionization parameter and electron density do not correlate with other global galaxy properties such as stellar mass, SFR, and metallicity. The mass-metallicity relation (MZR) at z~3.3 shows lower metallicity by ~0.7dex than that at z=0 at the same stellar mass. Our sample shows an offset by ~0.3dex from the locally defined mass-metallicity-SFR relation, indicating that simply extrapolating such a relation to higher redshift may predict an incorrect evolution of MZR. Furthermore, within the uncertainties we find no SFR-metallicity correlation, suggesting a less important role of SFR in controlling the metallicity at high redshift. We finally investigate the redshift evolution of the MZR by using the model by Lilly et al. (2013ApJ...772..119L), finding that the observed evolution from z=0 to z~3.3 can be accounted for by the model assuming a weak redshift evolution of the star formation efficiency.
- ID:
- ivo://CDS.VizieR/J/ApJ/886/152
- Title:
- ZTF early observations of Type Ia SNe. I. LCs
- Short Name:
- J/ApJ/886/152
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Early-time observations of Type Ia supernovae (SNe Ia) are essential to constrain the properties of their progenitors. In this paper, we present high-quality light curves of 127 SNe Ia discovered by the Zwicky Transient Facility (ZTF) in 2018. We describe our method to perform forced point-spread function photometry, which can be applied to other types of extragalactic transients. With a planned cadence of six observations per night (three g + three r), all of the 127 SNe Ia are detected in both g and r bands more than 10 days (in the rest frame) prior to the epoch of g-band maximum light. The redshifts of these objects range from z=0.0181 to 0.165; the median redshift is 0.074. Among the 127 SNe, 50 are detected at least 14 days prior to maximum light (in the rest frame), with a subset of nine objects being detected more than 17 days before g-band peak. This is the largest sample of young SNe Ia collected to date; it can be used to study the shape and color evolution of the rising light curves in unprecedented detail. We discuss six peculiar events in this sample: one 02cx-like event ZTF18abclfee (SN2018crl), one Ia-CSM SN ZTF18aaykjei (SN2018cxk), and four objects with possible super-Chandrasekhar mass progenitors: ZTF18abhpgje (SN2018eul), ZTF18abdpvnd (SN2018dvf), ZTF18aawpcel (SN2018cir), and ZTF18abddmrf (SN2018dsx).