Detailed elemental-abundance patterns of giant stars in the Galactic halo measured by the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) have revealed the existence of a unique and significant stellar subpopulation of silicon-enhanced ([Si/Fe]>+0.5) metal-poor stars, spanning a wide range of metallicities (-1.5<[Fe/H]<-0.8). Stars with over-abundances in [Si/Fe] are of great interest because these have very strong silicon (^28^Si) spectral features for stars of their metallicity and evolutionary stage, offering clues about rare nucleosynthetic pathways in globular clusters (GCs). Si-rich field stars have been conjectured to have been evaporated from GCs, however, the origin of their abundances remains unclear, and several scenarios have been offered to explain the anomalous abundance ratios. These include the hypothesis that some of them were born from a cloud of gas previously polluted by a progenitor that underwent a specific and peculiar nucleosynthesis event or, alternatively, that they were due to mass transfer from a previous evolved companion. However, those scenarios do not simultaneously explain the wide gamut of chemical species that are found in Si-rich stars. Instead, we show that the present inventory of such unusual stars, as well as their relation to known halo substructures (including the in situ halo, Gaia-Enceladus, the Helmi Stream(s), and Sequoia, among others), is still incomplete. We report the chemical abundances of the iron-peak (Fe), the light- (C and N), the alpha- (O and Mg), the odd-Z (Na and Al), and the s-process (Ce and Nd) elements of 55 newly identified Si-rich field stars (among more than ~600000 APOGEE-2 targets), which exhibit over-abundances of [Si/Fe] as extreme as those observed in some Galactic GCs, and they are relatively well distinguished from other stars in the [Si/Fe]-[Fe/H] plane. This new census confirms the presence of a statistically significant and chemically-anomalous structure in the inner halo: Jurassic. The chemo-dynamical properties of the Jurassic structure is consistent with it being the tidally disrupted remains of GCs, which are easily distinguished by an over-abundance of [Si/Fe] among Milky Way (MW) populations or satellites.
The Kapteyn moving group has been postulated as tidal debris from {omega} Centauri. If true, members of the group should show some of the chemical abundance patterns known for stars in the cluster. We present an optical and near-infrared high-resolution, high-signal-to-noise ratio spectroscopic study of 14 stars of the Kapteyn group, plus 10 additional stars (the {omega} Cen group) that, while not listed as members of the Kapteyn group as originally defined, have nevertheless been associated dynamically with {omega} Centauri. Abundances for Na, O, Mg, Al, Ca, and Ba were derived from the optical spectra, while the strength of the chromospheric HeI10830{AA} line is studied as a possible helium abundance indicator. The resulting Na-O and Mg-Al patterns for stars of the combined Kapteyn and {omega} Cen group samples do not resemble those of {omega} Centauri, and are not different from those of field stars of the Galactic halo. The distribution of equivalent widths of the HeI10830{AA} line is consistent with that found among non-active field stars. Therefore, no evidence is found for second-generation stars within our samples, which most likely rules out a globular-cluster origin. Moreover, no hint of the unique barium overabundance at the metal-rich end, well established for {omega} Centauri stars, is seen among stars of the combined samples. Because this specific Ba pattern is present in {omega} Centauri irrespective of stellar generation, this would rule out the possibility that our entire sample might be composed of only first-generation stars from the cluster. Finally, for the stars of the Kapteyn group, the possibility of an origin in the hypothetical parent galaxy of {omega} Centauri is disfavored by the different run of {alpha}-elements with metallicity between our targets and stars from present-day dwarf galaxies.
Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project whose aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for future ones. Our pilot study presents spatially integrated K-band spectra of three old (>=10Gyr) and metal poor ([Fe/H]~-1.4), and three intermediate age (1-2Gyr) and more metal rich ([Fe/H]~-0.4) globular clusters in the LMC.
We present mass and mass profile estimates for the Milky Way (MW) Galaxy using the Bayesian analysis developed by Eadie et al. (2015ApJ...806...54E) and using globular clusters (GCs) as tracers of the Galactic potential. The dark matter and GCs are assumed to follow different spatial distributions; we assume power-law model profiles and use the model distribution functions described in Evans et al. (1997MNRAS.286..315E) and Deason et al. (2012MNRAS.424L..44D). We explore the relationships between assumptions about model parameters and how these assumptions affect mass profile estimates. We also explore how using subsamples of the GC population beyond certain radii affect mass estimates. After exploring the posterior distributions of different parameter assumption scenarios, we conclude that a conservative estimate of the Galaxy's mass within 125kpc is 5.22x10^11^M_{sun}_, with a 50% probability region of (4.79,5.63)x10^11^M_{sun}_. Extrapolating out to the virial radius, we obtain a virial mass for the MW of 6.82x10^11^M_{sun}_ with 50% credible region of (6.06,7.53)x10^11^M_{sun}_ (r_vir_=185_-7_^+7^kpc). If we consider only the GCs beyond 10 kpc, then the virial mass is 9.02(5.69,10.86)x10^11^M_{sun}_ (r_vir_=198_-24_^+19^kpc). We also arrive at an estimate of the velocity anisotropy parameter {beta} of the GC population, which is {beta}=0.28 with a 50% credible region (0.21, 0.35). Interestingly, the mass estimates are sensitive to both the dark matter halo potential and visible matter tracer parameters, but are not very sensitive to the anisotropy parameter.
New radial velocity measurements for previously known and newly confirmed globular clusters (GCs) in the nearby massive galaxy NGC 5128 are presented. We have obtained spectroscopy from LDSS-2/Magellan, VIMOS/Very Large Telescope, and HYDRA/Cerro Tololo Inter-American Observatory from which we have measured the radial velocities of 218 known, and identified 155 new, GCs. The current sample of confirmed GCs in NGC 5128 is now 605 with 563 of these having radial velocity measurements, the second largest kinematic database for any galaxy. We have performed a new kinematic analysis of the GC system that extends out to 45' in galactocentric radius. We have examined the systemic velocity, projected rotation amplitude and axis, and the projected velocity dispersion of the GCs as functions of galactocentric distance and metallicity.
We study the dynamics of faint stellar substructures around the Umbrella Galaxy, NGC 4651, which hosts a dramatic system of streams and shells formed through the tidal disruption of a nucleated dwarf elliptical galaxy. We elucidate the basic characteristics of the system (colours, luminosities, stellar masses) using multiband Subaru/Suprime-Cam images. The implied stellar mass ratio of the ongoing merger event is ~1:50. We identify candidate kinematic tracers (globular clusters, planetary nebulae, HII regions) and follow up a subset with Keck/DEIMOS (DEep Imaging Multi-object Spectrograph) spectroscopy to obtain velocities. We find that 15 of the tracers are likely associated with halo substructures, including the probable stream progenitor nucleus. These objects delineate a kinematically cold feature in position-velocity phase space. We model the stream using single test particle orbits, plus a rescaled pre-existing N-body simulation. We infer a very eccentric orbit with a period of ~0.35Gyr and turning points at ~2-4 and ~40kpc, implying a recent passage of the satellite through the disc, which may have provoked the visible disturbances in the host galaxy. This work confirms that the kinematics of low surface brightness substructures can be recovered and modelled using discrete tracers - a breakthrough that opens up a fresh avenue for unravelling the detailed physics of minor merging.
We present a catalog of 908 objects observed with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) in fields in the vicinity of M31 and M33, targeted as globular clusters (GCs) and candidates. The targets include known GCs and candidates selected from the literature, as well as new candidates selected from the Sloan Digital Sky Survey (SDSS). Analysis shows that 356 of them are likely GCs with various confidence levels, while the remaining ones turn out to be background galaxies and quasars, stars and HII regions in M31 or foreground Galactic stars. The 356 likely GCs include 298 bona fide GCs and 26 candidates known in the literature. Three candidates, selected from the Revised Bologna Catalog of M31 GCs and candidates (RBC) and one possible cluster from Johnson et al.(2012, Cat. J/ApJ/752/95), are confirmed to be bona fide clusters. We search for new GCs in the halo of the M31 among the new candidates selected from the SDSS photometry. Based on radial velocities yielded by LAMOST spectra and visual examination of the SDSS images, we find 28 objects, 5 bona fide and 23 likely GCs. Among the five bona fide GCs, three have been recently discovered independently by others, and the remaining 25 are our new identifications, including two bona fide ones. The newly identified objects fall at projected distances ranging from 13 to 265kpc from M31. Of the two newly discovered bona fide GCs, one is located near M33, probably a GC belonging to M33. The other bona fide GC falls on the Giant Stream with a projected distance of 78kpc from M31. Of the 23 newly identified likely GCs, one has a projected distance of about 265kpc from M31 and could be an intergalactic cluster.
We select from Paper I a sample of 306 massive star clusters observed with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) in the vicinity fields of M31 and M33, and determine their metallicities, ages, and masses. Metallicities and ages are estimated by fitting the observed integrated spectra with stellar synthesis population (SSP) models with a pixel-to-pixel spectral fitting technique. Ages for most young clusters are also derived by fitting the multi-band photometric measurements with model spectral energy distributions (SEDs). The estimated cluster ages span a wide range, from several million years to the age of the universe. The numbers of clusters younger and older than 1Gyr are, respectively, 46 and 260. With ages and metallicities determined, cluster masses are then estimated by comparing the multi-band photometric measurements with SSP model SEDs. The derived masses range from ~10^3^ to ~10^7^M_{Sun}_, peaking at ~10^4.3^ and ~10^5.7^M_{Sun}_ for young (<1Gyr) and old (>1Gyr) clusters, respectively. Our estimated metallicities, ages, and masses are in good agreement with available literature values. Old clusters richer than [Fe/H]~-0.7dex have a wide range of ages. Those poorer than [Fe/H]~-0.7dex seem to be composed of two groups, as previously found for Galactic globular clusters-one of the oldest ages with all values of metallicity down to ~-2dex and another with metallicity increasing with decreasing age. The old clusters in the inner disk of M31 (0-30kpc) show a clear metallicity gradient measured at -0.038+/-0.023dex/kpc.
The Pan-Andromeda Archaeological Survey is a survey of >400deg^2^ centered on the Andromeda (M31) and Triangulum (M33) galaxies that has provided the most extensive panorama of an L* galaxy group to large projected galactocentric radii. Here, we collate and summarize the current status of our knowledge of the substructures in the stellar halo of M31, and discuss connections between these features. We estimate that the 13 most distinctive substructures were produced by at least 5 different accretion events, all in the last 3 or 4Gyr. We suggest that a few of the substructures farthest from M31 may be shells from a single accretion event. We calculate the luminosities of some prominent substructures for which previous estimates were not available, and we estimate the stellar mass budget of the outer halo of M31. We revisit the problem of quantifying the properties of a highly structured data set; specifically, we use the OPTICS clustering algorithm to quantify the hierarchical structure of M31's stellar halo and identify three new faint structures. M31's halo, in projection, appears to be dominated by two "mega-structures", which can be considered as the two most significant branches of a merger tree produced by breaking M31's stellar halo into increasingly smaller structures based on the stellar spatial clustering. We conclude that OPTICS is a powerful algorithm that could be used in any astronomical application involving the hierarchical clustering of points.
Large spectrosc. survey of Palomar 5 stellar stream
Short Name:
J/ApJ/842/120
Date:
21 Oct 2021
Publisher:
CDS
Description:
We present two spectroscopic surveys of the tidal stellar stream of the Palomar 5 globular cluster undertaken with the VLT/FLAMES and AAT/AAOmega instruments. We use these data in conjunction with photometric data presented in the previous contribution in this series to classify the survey stars in terms of their probability of belonging to the Palomar 5 stellar stream. We find that high-probability candidates are only found in a very narrow spatial interval surrounding the locus of the stream on the sky. PanSTARRS RRLyrae stars in this region of the sky are also distributed in a similar manner. The absence of significant "fanning" of this stellar stream confirms that Palomar 5 does not follow a chaotic orbit. Previous studies have found that Palomar 5 is largely devoid of low-mass stars, and we show that this is true also of the stellar populations along the trailing arm out to 6{deg}. Within this region, which contains 73% of the detected stars, the population is statistically identical to the core, implying that the ejection of the low-mass stars occurred before the formation of the stream. We also present an updated structural model fit to the bound remnant, which yields a total mass of 4297+/-98M_{sun}_ and a tidal radius 0.145+/-0.009kpc. We estimate the mass of the observed system including the stream to be 12200+/-400M_{sun}_, and the initial mass to have been ~47000+/-1500M_{sun}_.