- ID:
- ivo://CDS.VizieR/J/ApJ/704/652
- Title:
- Radio transients in a 1.4GHz drift-scan survey
- Short Name:
- J/ApJ/704/652
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report two new radio transients at high Galactic latitude, WJN J0951+3300 (RA=09h51m22s+/-10s, DE=33{deg}00'+/-0.4{deg}, b=50{deg}54.2') and WJN J1039+3300 (RA=10h39m26s+/-10s, DE=33{deg}00'+/-0.4{deg}, b=60{deg}58.5'), which were detected by interferometric drift-scan observations at 1.4GHz at the Waseda Nasu Pulsar Observatory. WJN J0951+3300 was detected at 16:49:32UT on 2006 January 12 with the flux density of approximately 1760.5+/-265.9mJy, and WJN J1039+3300 was detected at 17:13:32UT on 2006 January 18 with the flux density of approximately 2242.5+/-228.7mJy. Both of them lasted for a short duration (<=2 days). The possibility that the distribution of the WJN radio transients is isotropic was suggested in a previous study. Having re-evaluated the log N-log S relation with the addition of the two new objects reported in this paper, we find that the slope is consistent with a slope of -1.5 and the previous result. Additionally, although there are several counterparts to WJN radio transients, we found that one of the quasar counterparts within the positional error of WJN J0951+3300 could be a radio-loud quasar. We have discussed whether or not WJN J0951+3300 could be of this quasar origin.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/other/A+ARV/20.51
- Title:
- Rapidly rotating stars
- Short Name:
- J/other/A+ARV/20
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Optical interferometry provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Through direct observation of rotationally distorted photospheres at sub-milliarcsecond scales, we are now able to characterize latitude dependencies of stellar radius, temperature structure, and even energy transport. These detailed new views of stars are leading to revised thinking in a broad array of associated topics, such as spectroscopy, stellar evolution, and exoplanet detection. As newly advanced techniques and instrumentation mature, this topic in astronomy is poised to greatly expand in depth and influence.
- ID:
- ivo://CDS.VizieR/J/A+A/566/A125
- Title:
- Rigel K-band temporal monitoring
- Short Name:
- J/A+A/566/A125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the variability of the stellar winds on the distance determination remains poorly understood. Our aim is to probe the inhomogeneous structures in the stellar wind using spectro-interferometric monitoring. We present a spatially resolved, high-spectral resolution (R=12000) K-band temporal monitoring of the bright supergiant {beta} Orionis (Rigel, B8 Iab) using Amber at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Br{gamma} line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the wind.
- ID:
- ivo://CDS.VizieR/J/A+A/658/A135
- Title:
- RS Cnc IRAM NOEMA interferometric data
- Short Name:
- J/A+A/658/A135
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- The latest evolutionary phases of low- and intermediate mass stars are characterized by complex physical processes like turbulence, convection, stellar pulsations, magnetic fields, condensation of solid particles, and the formation of massive outflows that inject freshly produced heavy elements and dust particles into the interstellar medium. By investigating individual objects in detail we wish to analyze and disentangle the effects of the interrelated physical processes on the structure of the wind forming region around these objects. We use the Northern Extended Millimeter Array (NOEMA) to obtain spatially and spectrally resolved observations of the semi-regular Asymptotic Giant Branch star RS Cancri to shed light on the morpho-kinematic structure of its inner, wind forming environment by applying detailed 3-D reconstruction modeling and LTE radiative transfer calculations. We detect 32 lines of 13 molecules and isotopologs (CO, SiO, SO, SO_2_, H_2_O, HCN, PN), including several transitions from vibrationally excited states. HCN, H^13^CN, millimeter vibrationally excited H_2_O, SO, ^34^SO, SO_2_, and PN are detected for the first time in RS Cnc. Evidence for rotation is seen in HCN, SO, SO_2_, and SiO(v=1). From CO and SiO channel maps, we find an inner, equatorial density enhancement, and a bipolar outflow structure with a mass loss rate of 1x10^-7^M_{sun}_/yr for the equatorial region and of 2x10^-7^M_{sun}_/yr for the polar outflows. The ^12^CO/^13^CO ratio is measured to be ~20 on average, 24+/-2 in the polar outflows and 19+/-3 in the equatorial region. We do not find direct evidence of a companion that might explain this kind of kinematic structure, and explore the possibility that a magnetic field might be the cause of it. The innermost molecular gas is influenced by stellar pulsation and possibly by convective cells that leave their imprint on broad wings of certain molecular lines, such as SiO and SO. RS Cnc is one of the few nearby, low mass-loss-rate, oxygen-rich AGB stars with a wind displaying both an equatorial disk and bipolar outflows. Its orientation with respect to the line of sight is particularly favorable for a reliable study of its morpho-kinematics. The mechanism causing early spherical symmetry breaking remains however uncertain, calling for additional high spatial and spectral resolution observations of the emission of different molecules in different transitions, along with a deeper investigation of the coupling among the different physical processes at play.
- ID:
- ivo://CDS.VizieR/J/A+A/642/A85
- Title:
- RX J0603.3+4214 LOFAR 58GHz images
- Short Name:
- J/A+A/642/A85
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Ultra-low frequency observations (<100MHz) are particularly challenging because they are usually performed in a low signal-to-noise ratio regime due to the high sky temperature and because of ionospheric disturbances whose effects are inversely proportional to the observing frequency. Nonetheless, these observations are crucial for studying the emission from low-energy populations of cosmic rays. We aim to obtain the first thermal-noise limited (~1.5mJy/beam) deep continuum radio map using the Low Frequency Array's Low Band Antenna (LOFAR LBA) system. Our demonstration observation targeted the galaxy cluster RX J0603.3+4214 (known as the Toothbrush cluster). We used the resulting ultra-low frequency (39-78MHz) image to study cosmic-ray acceleration and evolution in the post shock region considering the presence of a radio halo. We describe the data reduction we used to calibrate LOFAR LBA observations. The resulting image was combined with observations at higher frequencies (LOFAR 150MHz and VLA 1500MHz) to extract spectral information.Results.We obtained the first thermal-noise limited image from an observation carried out with the LOFAR LBA system using allDutch stations at a central frequency of 58MHz. With eight hours of data, we reached an rms noise of 1.3mJy/beam at a resolution of 18"x11". The procedure we developed is an important step towards routine high-fidelity imaging with the LOFAR LBA. Theanalysis of the radio spectra shows that the radio relic extends to distances of 800kpc downstream from the shock front, larger than what is allowed by electron cooling time. Furthermore, the shock wave started accelerating electrons already at a projected distance of <300kpc from the crossing point of the two clusters. These results may be explained by electrons being re-accelerated down stream by background turbulence, possibly combined with projection effects with respect to the radio halo.
- ID:
- ivo://CDS.VizieR/J/A+A/595/A31
- Title:
- SAM detection limits of 8 debris disks
- Short Name:
- J/A+A/595/A31
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse aperture masking (SAM) is a high angular resolution technique strongly contributing to probing the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low-mass companions, or to set detection limits. We observed eight stars presenting debris disks ({beta} Pictoris, AU Microscopii, 49 Ceti, {eta} Telescopii, Fomalhaut, g Lupi, HD 181327, and HR 8799) with SAM technique on the NaCo instrument at the Very Large Telescope (VLT). No close companions were detected using closure phase information under 0.5" of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. We derived upper mass limits on the presence of companions in the area of a few times the telescope's diffraction limits around each target star.
- ID:
- ivo://CDS.VizieR/J/A+A/613/A11
- Title:
- SDC13 NH_3_(1,1) and NH_3_(2,2) datacubes
- Short Name:
- J/A+A/613/A11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Converging networks of interstellar filaments, that is hubs, have been recently linked to the formation of stellar clusters and massive stars. Understanding the relationship between the evolution of these systems and the formation of cores and stars inside them is at the heart of current star formation research. The goal is to study the kinematic and density structure of the SDC13 prototypical hub at high angular resolution to determine what drives its evolution and fragmentation. We have mapped SDC13, a ~1000M_{sun}_ infrared dark hub, in NH_3_(1,1) and NH_3_(2,2) emission lines, with both the Jansky Very Large Array and Green Bank Telescope. The high angular resolution achieved in the combined dataset allowed us to probe scales down to 0.07pc. After fitting the ammonia lines, we computed the integrated intensities, centroid velocities and line widths, along with gas temperatures and H_2_ column densities. The mass-per-unit-lengths of all four hub filaments are thermally super- critical, consistent with the presence of tens of gravitationally bound cores identified along them. These cores exhibit a regular separation of ~0.37+/-0.16pc suggesting gravitational instabilities running along these super-critical filaments are responsible for their fragmentation. The observed local increase of the dense gas velocity dispersion towards starless cores is believed to be a consequence of such fragmentation process. Using energy conservation arguments, we estimate that the gravitational to kinetic energy conversion efficiency in the SDC13 cores is ~35%. We see velocity gradient peaks towards ~63% of cores as expected during the early stages of filament fragmentation. Another clear observational signature is the presence of the most massive cores at the filaments' junction, where the velocity dispersion is largest. We interpret this as the result of the hub morphology generating the largest acceleration gradients near the hub centre. We propose a scenario for the evolution of the SDC13 hub in which filaments first form as post-shock structures in a supersonic turbulent flow. As a result of the turbulent energy dissipation in the shock, the dense gas within the filaments is initially mostly subsonic. Then gravity takes over and starts shaping the evolution of the hub, both fragmenting filaments and pulling the gas towards the centre of the gravitational well. By doing so, gravitational energy is converted into kinetic energy in both local (cores) and global (hub centre) potential well minima. Furthermore, the generation of larger gravitational acceleration gradients at the filament junctions promotes the formation of more massive cores.
- ID:
- ivo://CDS.VizieR/J/ApJ/869/66
- Title:
- Search for extraterrestrial intelligence with ATA
- Short Name:
- J/ApJ/869/66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report a novel radio autocorrelation search for extraterrestrial intelligence. For selected frequencies across the terrestrial microwave window (1-10GHz), observations were conducted at the Allen Telescope Array to identify artificial non-sinusoidal periodic signals with radio bandwidths greater than 4Hz, which are capable of carrying substantial messages with symbol rates from 4 to 10^6^Hz. Out of 243 observations, about half (101) were directed toward sources with known continuum flux >~1Jy over the sampled bandwidth (quasars, pulsars, supernova remnants, and masers), based on the hypothesis that they might harbor heretofore undiscovered natural or artificial repetitive, phase or frequency modulation. The rest of the observations were directed mostly toward exoplanet stars with no previously discovered continuum flux. No signals attributable to extraterrestrial technology were found in this study. We conclude that the maximum probability that future observations like the ones described here will reveal repetitively modulated emissions is less than 5% for continuum sources and exoplanets alike. The paper concludes by describing a new approach to expanding this survey to many more targets and much greater sensitivity using archived data from interferometers all over the world.
- ID:
- ivo://CDS.VizieR/J/AJ/152/181
- Title:
- SETI observations of exoplanets with the ATA
- Short Name:
- J/AJ/152/181
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report radio SETI observations on a large number of known exoplanets and other nearby star systems using the Allen Telescope Array (ATA). Observations were made over about 19000hr from 2009 May to 2015 December. This search focused on narrowband radio signals from a set totaling 9293 stars, including 2015 exoplanet stars and Kepler objects of interest and an additional 65 whose planets may be close to their habitable zones. The ATA observations were made using multiple synthesized beams and an anticoincidence filter to help identify terrestrial radio interference. Stars were observed over frequencies from 1 to 9GHz in multiple bands that avoid strong terrestrial communication frequencies. Data were processed in near-real time for narrowband (0.7-100Hz) continuous and pulsed signals with transmitter/receiver relative accelerations from -0.3 to 0.3m/s^2^. A total of 1.9x10^8^ unique signals requiring immediate follow-up were detected in observations covering more than 8x10^6^ star-MHz. We detected no persistent signals from extraterrestrial technology exceeding our frequency-dependent sensitivity threshold of 180-310x10^-26^W/m^2^.
- ID:
- ivo://CDS.VizieR/J/A+A/621/A119
- Title:
- SgrA* and NRAS530 86GHz images
- Short Name:
- J/A+A/621/A119
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The compact radio source Sagittarius A* (Sgr A*) in the Galactic centre is the primary supermassive black hole candidate. General relativistic magnetohydrodynamical (GRMHD) simulations of the accretion flow around Sgr A* predict the presence of sub-structure at observing wavelengths of ~3mm and below (frequencies of 86GHz and above). For very long baseline interferometry (VLBI) observations of Sgr A* at this frequency the blurring effect of interstellar scattering becomes sub-dominant, and arrays such as the high sensitivity array (HSA) and the global mm-VLBI array (GMVA) are now capable of resolving potential sub-structure in the source. Such investigations help to improve our understanding of the emission geometry of the mm-wave emission of Sgr A*, which is crucial for constraining theoretical models and for providing a background to interpret 1mm VLBI data from the Event Horizon Telescope (EHT). Following the closure phase analysis in our first paper, which indicates asymmetry in the 3 mm emission of Sgr A*, here we have used the full visibility information to check for possible sub-structure. We extracted source size information from closure amplitude analysis, and investigate how this constrains a combined fit of the size-frequency relation and the scattering law for Sgr A*. We performed high-sensitivity VLBI observations of Sgr A* at 3mm using the Very Long Baseline Array (VLBA) and the Large Millimeter Telescope (LMT) in Mexico on two consecutive days in May 2015, with the second epoch including the Greenbank Telescope (GBT). We confirm the asymmetry for the experiment including GBT. Modelling the emission with an elliptical Gaussian results in significant residual flux of ~10mJy in south-eastern direction. The analysis of closure amplitudes allows us to precisely constrain the major and minor axis size of the main emission component. We discuss systematic effects which need to be taken into account. We consider our results in the context of the existing body of size measurements over a range of observing frequencies and investigate how well-constrained the size-frequency relation is by performing a simultaneous fit to the scattering law and the size-frequency relation. We find an overall source geometry that matches previous findings very closely, showing a deviation in fitted model parameters less than 3% over a time scale of weeks and suggesting a highly stable global source geometry over time. The reported sub-structure in the 3mm emission of Sgr A* is consistent with theoretical expectations of refractive noise on long baselines. However, comparing our findings with recent results from 1mm and 7mm VLBI observations, which also show evidence for east-west asymmetry, we cannot exclude an intrinsic origin. Confirmation of persistent intrinsic substructure will require further VLBI observations spread out over multiple epochs.