- ID:
- ivo://CDS.VizieR/J/A+A/614/A76
- Title:
- CARMENES input catalogue of M dwarfs. III.
- Short Name:
- J/A+A/614/A76
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- CARMENES is a spectrograph for radial velocity surveys of M dwarfs with the aim of detecting Earth-mass planets orbiting in the habitable zones of their host stars. To ensure an optimal use of the CARMENES guaranteed time observations, in this paper we investigate the correlation of activity and rotation for approximately 2200 M dwarfs, ranging in spectral type from M0.0 V to M9.0 V. We present new high-resolution spectroscopic observations with FEROS, CAFE, and HRS of approximately 500 M dwarfs. For each new observation, we determined its radial velocity and measured its H{alpha} activity index and its rotation velocity. Additionally, we have multiple observations of many stars to investigate if there are any radial velocity variations due to multiplicity. The results of our survey confirm that early-M dwarfs are H{alpha} inactive with low rotational velocities and that late-M dwarfs are H{alpha} active with very high rotational velocities. The results of this high-resolution analysis comprise the most extensive catalogue of rotation and activity in M dwarfs currently available.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/621/A126
- Title:
- CARMENES input catalogue of M dwarfs. IV.
- Short Name:
- J/A+A/621/A126
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The main goal of this work is to measure rotation periods of the M-type dwarf stars being observed by the CARMENES exoplanet survey to help distinguish radial-velocity signals produced by magnetic activity from those produced by exoplanets. Rotation periods are also fundamental for a detailed study of the relation between activity and rotation in late-type stars. We look for significant periodic signals in 622 photometric time series of 337 bright, nearby M dwarfs obtained by long-time baseline, automated surveys (MEarth, ASAS, SuperWASP, NSVS, Catalina, ASAS-SN, K2, and HATNet) and, for 20 stars, obtained by us with four 0.2-0.8m telescopes at high geographical latitudes. We present 142 rotation periods (73 new) from 0.12d to 133d and ten long-term activity cycles (six new) from 3.0a to 11.5a. We compare our determinations with those in the existing literature, investigate the distribution of Prot in the CARMENES input catalogue, the amplitude of photometric variability, and their relation to vsini and pEW(H{alpha}), and identify three very active stars with new rotation periods between 0.34d and 23.6d.
- ID:
- ivo://CDS.VizieR/J/A+A/642/A115
- Title:
- CARMENES input catalogue of M dwarfs. V.
- Short Name:
- J/A+A/642/A115
- Date:
- 02 Mar 2022 00:04:08
- Publisher:
- CDS
- Description:
- The relevance of M dwarfs in the search for potentially habitable Earth-size planets has grown significantly in the last years. In our on-going effort of comprehensively and accurately characterising confirmed and potential planet-hosting M dwarfs, in particular for the CARMENES survey, we have carried out a comprehensive multi-band photometric analysis involving spectral energy distributions, luminosities, absolute magnitudes, colours, and spectral types, from which we have derived basic astrophysical parameters. We have carefully compiled photometry in 20 passbands from the far-ultraviolet to the mi-infrared, and combined it with the latest parallactic distances and close-multiplicity information, mostly from Gaia DR2, of a sample of 2479 K5 V to L8 stars and ultracool dwarfs, including 2210 nearby, bright, M dwarfs. For that, we have made extensive use of Virtual Observatory tools. We have homogeneously computed accurate bolometric luminosities, effective temperatures of 1843 single stars, derived their radii and masses, studied the impact of metallicity, and compared our results with the literature. The over 40 000 individually-inspected magnitudes, together with the basic data and derived parameters of the stars, one by one and averaged by spectral type, have been made public to the astronomical community. In addition, we have reported 40 new close multiple systems and candidates (rho<3.3-arcsec) and 36 overluminous stars that are assigned to young Galactic populations. In the new era of exoplanet searches around M dwarfs via transit (e.g., TESS, PLATO) and radial velocity (e.g., CARMENES, NIRPS+HARPS), this work is of fundamental importance for stellar and, thus, planetary parameter determination.
- ID:
- ivo://CDS.VizieR/J/A+A/623/A44
- Title:
- CARMENES M-dwarfs activity indicators
- Short Name:
- J/A+A/623/A44
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs (CARMENES) survey is searching for Earth-like planets orbiting M dwarfs using the radial velocity method. Studying the stellar activity of the target stars is important to avoid false planet detections and to improve our understanding of the atmospheres of late-type stars. In this work we present measurements of activity indicators at visible and near-infrared wavelengths for 331 M dwarfs observed with CARMENES. Our aim is to identify the activity indicators that are most sensitive and easiest to measure, and the correlations among these indicators. We also wish to characterise their variability. Using a spectral subtraction technique, we measured pseudo-equivalent widths of the HeI D3, H-alpha, HeI 10833, and Pa-beta lines, the NaI D doublet, and the CaII infrared triplet, which have a chromospheric component in active M dwarfs. In addition, we measured an index of the strength of two TiO and two VO bands, which are formed in the photosphere. We also searched for periodicities in these activity indicators for all sample stars using generalised Lomb-Scargle periodograms. We find that the most slowly rotating stars of each spectral subtype have the strongest H-alpha absorption. H-alpha is correlated most strongly with HeI D3, whereas NaI D and the CaII infrared triplet are also correlated with H-alpha. HeI 10833 and Pa-beta show no clear correlations with the other indicators. The TiO bands show an activity effect that does not appear in the VO bands. We find that the relative variations of H-alpha and HeI D3 are smaller for stars with higher activity levels, while this anti-correlation is weaker for NaI D and the CaII infrared triplet, and is absent for HeI 10833 and Pa-beta. Periodic variation with the rotation period most commonly appears in the TiO bands, H-alpha, and in the CaII infrared triplet.
- ID:
- ivo://CDS.VizieR/J/A+A/612/A49
- Title:
- 324 CARMENES M dwarfs velocities
- Short Name:
- J/A+A/612/A49
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520-1710nm at a resolution of at least R>80000, and we measure its RV, H{alpha} emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700-900nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1m/s in very low mass M dwarfs at longer wavelengths likely requires the use of a 10m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4m/s.
- ID:
- ivo://CDS.VizieR/J/A+A/627/A161
- Title:
- CARMENES stars multi wavelength measurements
- Short Name:
- J/A+A/627/A161
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present precise photospheric parameters of 282 M dwarfs determined from fitting the most recent version of PHOENIX models to high-resolution CARMENES spectra in the visible (0.52-0.96um) and near-infrared wavelength range (0.96-1.71um). With its aim to search for habitable planets around M dwarfs, several planets of different masses have been detected. The characterization of the target sample is important for the ability to derive and constrain the physical properties of any planetary systems that are detected. As a continuation of previous work in this context, we derived the fundamental stellar parameters effective temperature, surface gravity, and metallicity of the CARMENES M-dwarf targets from PHOENIX model fits using a {chi}^2^ method. We calculated updated PHOENIX stellar atmosphere models that include a new equation of state to especially account for spectral features of low-temperature stellar atmospheres as well as new atomic and molecular line lists. We show the importance of selecting magnetically insensitive lines for fitting to avoid effects of stellar activity in the line profiles. For the first time, we directly compare stellar parameters derived from multi wavelength range spectra, simultaneously observed for the same star. In comparison with literature values we show that fundamental parameters derived from visible spectra and visible and near-infrared spectra combined are in better agreement than those derived from the same spectra in the near-infrared alone.
- ID:
- ivo://CDS.VizieR/J/A+A/656/A162
- Title:
- CARMENES stellar atmospheric parameters
- Short Name:
- J/A+A/656/A162
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- We determine effective temperatures, surface gravities, and metallicities for a sample of 343 M dwarfs observed with CARMENES, the double-channel, high-resolution spectrograph installed at the 3.5m telescope at Calar Alto Observatory. We employed SteParSyn, a Bayesian spectral synthesis implementation, along with a grid of synthetic spectra based on BT-Settl model atmospheres and the radiative transfer code turbospectrum. The synthetic grid was computed around 75 magnetically insensitive TiI and FeI along with the TiO gamma- and epsilon-bands. To avoid degeneracies in the parameter space, we imposed Bayesian priors based on multi-band photometric data available for the sample.
- ID:
- ivo://CDS.VizieR/J/A+A/652/A116
- Title:
- CARMENES time-resolved CaII H&K catalog
- Short Name:
- J/A+A/652/A116
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Radial-velocity (RV) jitter caused by stellar magnetic activity is an important factor in state-of-the-art exoplanet discovery surveys such as CARMENES. Stellar rotation, along with heterogeneities in the photosphere and chromosphere caused by activity, can result in false-positive planet detections. Hence, it is necessary to determine the stellar rotation period and compare it to any putative planetary RV signature. Long-term measurements of activity indicators such as the chromospheric emission in the CaII H&K lines enable the identification of magnetic activity cycles. In order to determine stellar rotation periods and study the long-term behavior of magnetic activity of the CARMENES guaranteed time observations (GTO) sample, it is advantageous to extract R'HK time series from archival data, since the CARMENES spectrograph does not cover the blue range of the stellar spectrum containing the Ca II H&K lines. We have assembled a catalog of 11634 archival spectra of 186 M dwarfs acquired by seven different instruments covering the CaII H&K regime: ESPADONS, FEROS, HARPS, HIRES, NARVAL, TIGRE, and UVES. The relative chromospheric flux in these lines, R'HK, was directly extracted from the spectra by rectification with PHOENIX synthetic spectra via narrow passbands around the Ca II H&K line cores. The combination of archival spectra from various instruments results in time series for 186 stars from the CARMENES GTO sample. As an example of the use of the catalog, we report the tentative discovery of three previously unknown activity cycles of M dwarfs. We conclude that the method of extracting R'HK with the use of model spectra yields consistent results for different instruments and that the compilation of this catalog will enable the analysis of long-term activity time series for a large number of M dwarfs.
- ID:
- ivo://CDS.VizieR/J/A+A/643/A112
- Title:
- CARMENES VIS RVs of 3 M dwarfs
- Short Name:
- J/A+A/643/A112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We announce the discovery of two planets orbiting the M dwarfs GJ 251 (0.360+/-0.015M_{sun}_) and HD 238090 (0.578+/-0.021M_{sun}_) based on CARMENES radial velocity (RV) data. In addition, we independently confirm with CARMENES data the existence of Lalande 21185 b, a planet that has recently been discovered with the SOPHIE spectrograph. All three planets belong to the class of warm or temperate super-Earths and share similar properties. The orbital periods are 14.24d, 13.67d, and 12.95d and the minimum masses are 4.0+/-0.4M_{sun}_, 6.9+/-0.9M_{sun}_, and 2.7+/-0.3M_{sun}_ for GJ 251 b, HD 238090 b, and Lalande 21185 b, respectively. Based on the orbital and stellar properties, we estimate equilibrium temperatures of 351.0+/-1.4K for GJ 251 b, 469.6+/-2.6K for HD 238090 b, and 370.1+/-6.8K for Lalande 21185 b. For the latter we resolve the daily aliases that were present in the SOPHIE data and that hindered an unambiguous determination of the orbital period. We find no significant signals in any of our spectral activity indicators at the planetary periods. The RV observations were accompanied by contemporaneous photometric observations. We derive stellar rotation periods of 122.1+/-2.2d and 96.7+/-3.7d for GJ 251 and HD 238090, respectively. The RV data of all three stars exhibit significant signals at the rotational period or its first harmonic. For GJ 251 and Lalande 21185, we also find long-period signals around 600d, and 2900d, respectively, which we tentatively attribute to long-term magnetic cycles. We apply a Bayesian approach to carefully model the Keplerian signals simultaneously with the stellar activity using Gaussian process regression models and extensively search for additional significant planetary signals hidden behind the stellar activity. Current planet formation theories suggest that the three systems represent a common architecture, consistent with formation following the core accretion paradigm.
- ID:
- ivo://CDS.VizieR/J/AJ/150/42
- Title:
- Catalog of 2612 M dwarfs from LAMOST
- Short Name:
- J/AJ/150/42
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We develop a template-fit method to automatically identify and classify late-type K and M dwarfs in spectra from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST). A search of the commissioning data, acquired in 2009-2010, yields the identification of 2612 late-K and M dwarfs. The template fit method also provides spectral classification to half a subtype, classifies the stars along the dwarf-subdwarf (dM/sdM/esdM/usdM) metallicity sequence, and provides improved metallicity/gravity information on a finer scale. The automated search and classification is performed using a set of cool star templates assembled from the Sloan Digital Sky Survey spectroscopic database. We show that the stars can be efficiently classified despite shortcomings in the LAMOST commissioning data which include bright sky lines in the red. In particular we find that the absolute and relative strengths of the critical TiO and CaH molecular bands around 7000{AA} are cleanly measured, which provides accurate spectral typing from late-K to mid-M, and makes it possible to estimate metallicity classes in a way that is more efficient and reliable than with the use of spectral indices or spectral-index based parameters such as {zeta}_TiO/CaH_. Most of the cool dwarfs observed by LAMOST are found to be metal-rich dwarfs (dM). However, we identify 52 metal-poor M subdwarfs (sdM), 5 very metal-poor extreme subdwarfs (esdM) and 1 probable ultra metal-poor subdwarf (usdM). We use a calibration of spectral type to absolute magnitude and estimate spectroscopic distances for all the stars; we also recover proper motions from the SUPERBLINK and PPMXL catalogs. Our analysis of the estimated transverse motions suggests a mean velocity and standard deviation for the UVW components of velocity to be: <U>=-9.8km/s, {sigma}_U_=35.6km/s; <V> =-22.8km/s, {sigma}_V_=30.6km/s; <W> =-7.9km/s, {sigma}_W_=28.4km/s. The resulting values are in general agreement with previous reported results, which yields confidence in our spectral classification and spectroscopic distance estimates, and illustrates the potential for using LAMOST spectra of K and M dwarfs for investigating the chemo-kinematics of the local Galactic disk and halo.