- ID:
- ivo://CDS.VizieR/J/ApJ/831/L3
- Title:
- NIR spectra of 10 PNe in LMC and SMC
- Short Name:
- J/ApJ/831/L3
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present near-infrared spectra of 10 planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5 m Baade and 8.1 m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n-capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s-process enrichments of Kr (0.6-1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5-0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2-3 M_{\sun}_ progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s-process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2-0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n-capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s-process enrichments to be studied in PN populations with well-determined distances.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/589/A28
- Title:
- N66, N88 & N25+N26 emission line maps
- Short Name:
- J/A+A/589/A28
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- This paper presents [CII], [CI] and CO emission line maps of the star-forming regions N66, N25+N26, and N88 in the metal-poor Local Group dwarf galaxy SMC. The spatial and velocity structure of the large HII region N66 reveals an expanding ring of shocked molecular gas centered on the exciting star cluster NGC346, whereas a more distant dense molecular cloud is being eroded by UV radiation from the same cluster. In the N25+N26 and N88 maps, diffuse [CII] emission at a relatively low surface brightness extends well beyond the compact boundaries of the bright emission associated with the HII regions. In all regions, the distribution of this bright [CII] emission and the less prominent [CI] emission closely follows the outline of the CO complexes, but the intensity of the [CII] and [CI] emission is generally anticorrelated, which can be understood by the action of photodissociation and photoionization processes. Notwithstanding the overall similarity of CO and [CII] maps, the intensity ratio of these lines varies significantly, mostly due to changes in CO brightness. [CII] emission line profiles are up to 50% wider in velocity than corresponding CO profiles. A radiative transfer analysis shows that the [CII] line is the dominant tracer of (CO-dark) molecular hydrogen in the SMC. CO emission traces only a minor fraction of the total amount of gas. The similarity of the spatial distribution and line profile shape, and the dominance of molecular gas associated with CII rather than CO emission imply that in the low-metallicity environment of the SMC the small amount of dense molecular gas traced by CO is embedded in the much more extended molecular gas traced only by [CII] emission. The contribution from neutral atomic and ionized hydrogen zones is negligible in the star-forming regions observed
- ID:
- ivo://CDS.VizieR/J/A+AS/35/347
- Title:
- OB and Supergiants stars in LMC
- Short Name:
- J/A+AS/35/347
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Two regions in the Large Magellanic Cloud, centered at 05:11-66:08 (34B) and 05:27-72:15 (47B) have been searched for OB and supergiant stars. A catalogue of 312 stars is presented in which objective prism spectral types, positions (1975), approximate B magnitudes and cross-identifications are given.
- ID:
- ivo://CDS.VizieR/J/A+A/423/919
- Title:
- Objects in LHA 115-N83-84-85 SMC region
- Short Name:
- J/A+A/423/919
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In this article we study the N83-84-85 region of the inner wing of the SMC. Direct and low-dispersion objective prism plates taken with the 1.2m UK Schmidt Telescope have been digitized by the SuperCOSMOS machine. Star counts have been performed for our region in selected luminosity slices in the U filter and isodensity contours have been used to identify the structures with enhanced stellar number density. We find evidence of triggered star formation from massive stars of older to more recent OB associations. Circular arcs constructed by O and B stars have been detected. A study of the population places stars with more recent ages in the groups of the arcs than of their centers. These effects can be explained by supernova explosions. A catalogue of the non-saturated detected OB stars in this region is given.
- ID:
- ivo://CDS.VizieR/J/A+A/615/A40
- Title:
- OB stars in N206 in the LMC
- Short Name:
- J/A+A/615/A40
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Context. Clusters or associations of early-type stars are often associated with a "superbubble" of hot gas. The formation of such superbubbles is caused by the feedback from massive stars. The complex N 206 in the Large Magellanic Cloud (LMC) exhibits a superbubble and a rich massive star population. Aims. Our goal is to perform quantitative spectral analyses of all massive stars associated with the N 206 superbubble in order to determine their stellar and wind parameters. We compare the superbubble energy budget to the stellar energy input and discuss the star formation history of the region. Methods. We observed the massive stars in the N 206 complex using the multi-object spectrograph FLAMES at ESO's Very Large Telescope (VLT). Available ultra-violet (UV) spectra from archives are also used. The spectral analysis is performed with Potsdam Wolf-Rayet (PoWR) model atmospheres by reproducing the observations with the synthetic spectra. Results. We present the stellar and wind parameters of the OB stars and the two Wolf-Rayet (WR) binaries in the N 206 complex. Twelve percent of the sample show Oe/Be type emission lines, although most of them appear to rotate far below critical. We found eight runaway stars based on their radial velocity. The wind-momentum luminosity relation of our OB sample is consistent with the expectations. The Hertzsprung-Russell diagram (HRD) of the OB stars reveals a large age spread (1-30Myr), suggesting different episodes of star formation in the complex. The youngest stars are concentrated in the inner part of the complex, while the older OB stars are scattered over outer regions. We derived the present day mass function for the entire N 206 complex as well as for the cluster NGC 2018. The total ionizing photon flux produced by all massive stars in the N 206 complex is Q_0_~=5x10^50^s^-1^, and the mechanical luminosity of their stellar winds amounts to L_mec_=1.7x10^38^erg/s. Three very massive Of stars are found to dominate the feedback among 164 OB stars in the sample. The two WR winds alone release about as much mechanical luminosity as the whole OB star sample. The cumulative mechanical feedback from all massive stellar winds is comparable to the combined mechanical energy of the supernova explosions that likely occurred in the complex. Accounting also for the WR wind and supernovae, the mechanical input over the last five Myr is ~=2.3x10^52^erg. Conclusions. The N206 complex in the LMC has undergone star formation episodes since more than 30Myr ago. From the spectral analyses of its massive star population, we derive a current star formation rate of 2.2x10^-3^M_{sun}_/yr. From the combined input of mechanical energy from all stellar winds, only a minor fraction is emitted in the form of X-rays. The corresponding input accumulated over a long time also exceeds the current energy content of the complex by more than a factor of five. The morphology of the complex suggests a leakage of hot gas from the superbubble.
- ID:
- ivo://CDS.VizieR/J/A+A/598/A84
- Title:
- OB-type spectroscopic binaries
- Short Name:
- J/A+A/598/A84
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results. Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q>0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z_{sun}_) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z~1 to 2 which are estimated to have Z~0.5 Z_{sun}_.
- ID:
- ivo://CDS.VizieR/J/A+A/609/A7
- Title:
- Of-type stars in N206 in the LMC
- Short Name:
- J/A+A/609/A7
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant HII region N 206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. We aim to estimate stellar and wind parameters of all OB stars in N 206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum - luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N 206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N 206 superbubble as measured from the observed X-ray and H{alpha} emission.
- ID:
- ivo://CDS.VizieR/J/AcA/51/317
- Title:
- OGLE DIA. Catalog of LMC and SMC images
- Short Name:
- J/AcA/51/317
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first edition of a catalog of variable stars found in the Magellanic Clouds using OGLE-II data obtained during four years: 1997-2000. The catalog covers about 7 square degrees of the sky - 21 fields in the Large Magellanic Cloud and 11 fields in the Small Magellanic Cloud. All variables were found with the Difference Image Analysis (DIA) software. The catalog is divided into two sections. The DC section contains FITS reference images (obtained by co-adding 20 best frames for each field) and profile photometry (DOPHOT) of all variable stars on those images. The AC section contains flux variations and magnitudes of detected variable stars obtained with DIA as well as with DOPHOT. The errors of magnitude measurements are 0.005mag for the brightest stars (I<16mag) then grow to 0.08mag at 19mag stars and to 0.3mag at 20.5mag. Typically, there are about 400 I-band data points and about 30 V and B-band data points for more than 68 000 variables. The stars with high proper motions were excluded from this catalog and will be presented in a separate paper. A detailed analysis and classification of variable stars will be presented elsewhere. The catalog is available in electronic form via FTP and through WWW interface from the OGLE Internet archive. The FTP catalog contains approximately 2 GB of data.
- ID:
- ivo://CDS.VizieR/J/A+A/439/559
- Title:
- OGLE eclipsing binaries (bulge+lmc+smc)
- Short Name:
- J/A+A/439/559
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The 222000 I-band light curves of variable stars detected by the OGLE-II survey (ftp://bulge.princeton.edu/ogle/ogle2/bulge_dia_variables) in the direction of the Galactic Bulge have been searched for eclipsing binaries (EBs). A previously developed code to analyze lightcurve shapes and identify long period variables (LPVs) has been adapted to identify EBs. The parameters in the modified code have been optimised to recover a list of about 140 detached EBs in the Small Magellanic Cloud previously identified in the literature as particularly well suited for distance estimates (and which have periods more than 0.85 days). The power of the code is demonstrated by identifying 16 and 178 previously uncatalogued EBs in the SMC and LMC, respectively. Among the 222 000 variable stars in the direction of the Galactic Bulge 3053 EBs have been identified. Periods and phased lightcurves are presented.
- ID:
- ivo://CDS.VizieR/J/AcA/53/1
- Title:
- OGLE eclipsing binaries in LMC
- Short Name:
- J/AcA/53/1
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.