- ID:
- ivo://CDS.VizieR/J/AJ/159/167
- Title:
- AMUSING++ nearby galaxy compilation. I. Sample
- Short Name:
- J/AJ/159/167
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present here the All-weather MUse Supernova Integral-field of Nearby Galaxies (AMUSING++): the largest compilation of nearby galaxies observed with the Multi Unit Spectroscopic Explorer (MUSE) integral-field spectrograph so far. This collection consists of 635 galaxies from different MUSE projects covering the redshift interval 0.0002<z<0.1. The sample and its main properties are characterized and described here. It includes galaxies of almost all morphological types, with a good coverage in its color-magnitude diagram, within the stellar mass range between 10^8^ and 10^12^M{sun}, and with properties resembling those of a diameter-selected sample. The AMUSING++ sample is, therefore, suitable for studying, with unprecedented detail, the properties of nearby galaxies at global and local scales, providing us with more than 50 million individual spectra. We use this compilation to investigate the presence of galactic outflows. We exploit the use of combined emission-line images to explore the shape of the different ionized components and the distribution along classical diagnostic diagrams to disentangle the different ionizing sources across the optical extension of each galaxy. We use the cross-correlation function to estimate the level of symmetry of the emission lines as an indication of the presence of shocks and/or active galactic nuclei. We uncovered a total of 54 outflows, comprising ~8% of the sample. A large number of the discovered outflows correspond to those driven by active galactic nuclei (~60%), suggesting some bias in the selection of our sample. No clear evidence was found that outflow host galaxies are highly star-forming, and outflows appear to be found within all galaxies around the star-formation sequence.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/788/125
- Title:
- An ALMA survey of ECDFS submillimeter galaxies
- Short Name:
- J/ApJ/788/125
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first photometric redshift distribution for a large sample of 870 {mu}m submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z_phot_=2.3+/-0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z~1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z_phot_=2.5+/-0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z>=3 is at most 35%+/-5% of the total population. We derive a median stellar mass of M_*_=(8+/-1)x10^10^ M_{sun}_, although there are systematic uncertainties of up to 5x for individual sources. Assuming that the star formation activity in SMGs has a timescale of ~100 Myr, we show that their descendants at z~0 would have a space density and M_H_ distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.
- ID:
- ivo://CDS.VizieR/J/PASP/123/659
- Title:
- Analysis of flares of V1285 Aql
- Short Name:
- J/PASP/123/659
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Statistically analysing Johnson UBVR observations of V1285 Aql during the three observing seasons, both activity level and behaviour of the star are discussed in respect to obtained results. We also discuss the variation out-of-flare due to rotational modulation.
- ID:
- ivo://CDS.VizieR/J/AJ/155/196
- Title:
- Analysis of K2 LCs for members of USco & {rho} Oph
- Short Name:
- J/AJ/155/196
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an analysis of K2 light curves (LCs) for candidate members of the young Upper Sco (USco) association (~8 Myr) and the neighboring {rho} Oph embedded cluster (~1 Myr). We establish ~1300 stars as probable members, ~80% of which are periodic. The phased LCs have a variety of shapes which can be attributed to physical causes ranging from stellar pulsation and stellar rotation to disk-related phenomena. We identify and discuss a number of observed behaviors. The periods are ~0.2-30 days with a peak near 2 days and the rapid period end nearing breakup velocity. M stars in the young USco region rotate systematically faster than GK stars, a pattern also present in K2 data for the older Pleiades and Praesepe systems. At higher masses (types FGK), the well-defined period-color relationship for slowly rotating stars seen in the Pleiades and Praesepe systems is not yet present in USco. Circumstellar disks are present predominantly among the more slowly rotating M stars in USco, with few disks in the subday rotators. However, M dwarfs with disks rotate faster on average than FGK systems with disks. For four of these disked M dwarfs, we provide direct evidence for disk locking based on the K2 LC morphologies. Our preliminary analysis shows a relatively mass-independent spin-up by a factor of ~3.5 between USco and the Pleiades, then mass-dependent spin-down between Pleiades and Praesepe.
- ID:
- ivo://CDS.VizieR/J/ApJS/212/18
- Title:
- An atlas of UV-to-MIR galaxy SEDs
- Short Name:
- J/ApJS/212/18
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an atlas of 129 spectral energy distributions for nearby galaxies, with wavelength coverage spanning from the ultraviolet to the mid-infrared. Our atlas spans a broad range of galaxy types, including ellipticals, spirals, merging galaxies, blue compact dwarfs, and luminous infrared galaxies. We have combined ground-based optical drift-scan spectrophotometry with infrared spectroscopy from Spitzer and Akari with gaps in spectral coverage being filled using Multi-wavelength Analysis of Galaxy Physical Properties spectral energy distribution models. The spectroscopy and models were normalized, constrained, and verified with matched-aperture photometry measured from Swift, Galaxy Evolution Explorer, Sloan Digital Sky Survey, Two Micron All Sky Survey, Spitzer, and Wide-field Infrared Space Explorer images. The availability of 26 photometric bands allowed us to identify and mitigate systematic errors present in the data. Comparison of our spectral energy distributions with other template libraries and the observed colors of galaxies indicates that we have smaller systematic errors than existing atlases, while spanning a broader range of galaxy types. Relative to the prior literature, our atlas will provide improved K-corrections, photometric redshifts, and star-formation rate calibrations.
- ID:
- ivo://CDS.VizieR/J/ApJ/899/162
- Title:
- ANDICAM BVRIJHK light curve of Nova V906 Car
- Short Name:
- J/ApJ/899/162
- Date:
- 14 Mar 2022 07:11:01
- Publisher:
- CDS
- Description:
- We present optical and infrared photometry of the classical nova V906 Car, also known as Nova Car 2018 and ASASSN-18fv, which was discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) on 2018 March 16.32 UT (MJD 58193.0). The nova reached its maximum on MJD 58222.56 at Vmax=5.84{+/-}0.09mag, and had decline times of t_2,V_=26.2days and t_3,V_=33.0days. The data from Evryscope shows that the nova had already brightened to g'~13mag five days before discovery, as compared with its quiescent magnitude of g=20.13{+/-}0.03. The extinction toward the nova, as derived from high-resolution spectroscopy, shows an estimate consistent with foreground extinction to the Carina Nebula of A_V_=1.11_-0.39_^+0.54^. The light curve resembles a rare C (cusp) class nova with a steep decline slope of {alpha}=-3.94 post-cusp flare. From the light-curve decline rate, we estimate the mass of the white dwarf to be MWD=<0.8M{sun}, consistent with M_WD_=0.71_-0.19_^+0.23^ derived from modeling the accretion disk of the system in quiescence. The donor star is likely a K-M dwarf of 0.23-0.43M_{odot}, which is heated by its companion.
- ID:
- ivo://CDS.VizieR/J/AJ/161/112
- Title:
- 2012 and 2017 light curves of asteroid 2012 TC4
- Short Name:
- J/AJ/161/112
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Asteroid 2012TC4 is a small (~10m) near-Earth object that was observed during its Earth close approaches in 2012 and 2017. Earlier analyses of light curves revealed its excited rotation state. We collected all available photometric data from the two apparitions to reconstruct its rotation state and convex shape model. We show that light curves from 2012 and 2017 cannot be fitted with a single set of model parameters; the rotation and precession periods are significantly different for these two data sets, and they must have changed between or during the two apparitions. Nevertheless, we could fit all light curves with a dynamically self-consistent model assuming that the spin states of 2012TC4 in 2012 and 2017 were different. To interpret our results, we developed a numerical model of its spin evolution in which we included two potentially relevant perturbations: (I) gravitational torque due to the Sun and Earth and (II) radiation torque, known as the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. Despite our model simplicity, we found that the role of gravitational torques is negligible. Instead, we argue that the observed change of its spin state may be plausibly explained as a result of the YORP torque. To strengthen this interpretation, we verify that (I) the internal energy dissipation due to material inelasticity and (II) an impact with a sufficiently large interplanetary particle are both highly unlikely causes of its observed spin state change. If true, this is the first case where the YORP effect has been detected for a tumbling body.
- ID:
- ivo://CDS.VizieR/J/AJ/142/139
- Title:
- A new catalog of HII regions in M31
- Short Name:
- J/AJ/142/139
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new catalog of HII regions in M31. The full disk of the galaxy (~24kpc from the galaxy center) is covered in a 2.2deg^2^ mosaic of 10 fields observed with the Mosaic Camera on the Mayall 4m telescope as part of the Local Group Galaxies survey.
- ID:
- ivo://CDS.VizieR/J/AJ/154/269
- Title:
- A new photo-z method for quasars in Stripe 82
- Short Name:
- J/AJ/154/269
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new algorithm to estimate quasar photometric redshifts (photo-zs), by considering the asymmetries in the relative flux distributions of quasars. The relative flux models are built with multivariate Skew-t distributions in the multidimensional space of relative fluxes as a function of redshift and magnitude. For 151392 quasars in the SDSS, we achieve a photo-z accuracy, defined as the fraction of quasars with the difference between the photo-z z_p_ and the spectroscopic redshift z_s_, |{Delta}_z_|=|z_s_-z_p_|/(1+z_s_) within 0.1, of 74%. Combining the WISE W1 and W2 infrared data with the SDSS data, the photo-z accuracy is enhanced to 87%. Using the Pan-STARRS1 or DECaLS photometry with WISE W1 and W2 data, the photo-z accuracies are 79% and 72%, respectively. The prior probabilities as a function of magnitude for quasars, stars, and galaxies are calculated, respectively, based on (1) the quasar luminosity function, (2) the Milky Way synthetic simulation with the Besancon model, and (3) the Bayesian Galaxy Photometric Redshift estimation. The relative fluxes of stars are obtained with the Padova isochrones, and the relative fluxes of galaxies are modeled through galaxy templates. We test our classification method to select quasars using the DECaLS g, r, z, and WISE W1 and W2 photometry. The quasar selection completeness is higher than 70% for a wide redshift range 0.5<z<4.5, and a wide magnitude range 18<r<21.5 mag. Our photo-z regression and classification method has the potential to extend to future surveys. The photo-z code will be publicly available.
- ID:
- ivo://CDS.VizieR/J/AJ/161/196
- Title:
- An optical overview of blazars with LAMOST. I.
- Short Name:
- J/AJ/161/196
- Date:
- 16 Mar 2022 11:51:00
- Publisher:
- CDS
- Description:
- The extragalactic {gamma}-rays sky observed by the Fermi Large Area Telescope (LAT) is dominated by blazars. In the fourth release of the Fermi LAT Point Source Catalog (4FGL) are sources showing a multifrequency behavior similar to that of blazars but lacking an optical spectroscopic confirmation of their nature, known as blazar candidates of uncertain type (BCUs). We aim at confirming the blazar nature of BCUs and test if new optical spectroscopic observations can reveal spectral features, allowing us to get a redshift estimate for known BL Lac objects. We also aim to search for and discover changing-look blazars (i.e., blazars that show a different classification at different epochs). We carry out an extensive search for optical spectra available in the Large Sky Area Multi-object Fibre Spectroscopic Telescope (LAMOST) Data Release 5 (DR5) archive. We select sources out of the 4FGL catalog, the list of targets from our follow-up spectroscopic campaign of unidentified or unassociated {gamma}-ray sources, and the multifrequency catalog of blazars: the Roma-BZCAT. We select a total of 392 spectra. We also compare some of the LAMOST spectra with those available in the literature. We classify 20 BCUs confirming their blazar-like nature. Then we obtain 15 new redshift estimates for known blazars. We discover 26 transitional (i.e., changing-look) blazars that changed their classification. Finally, we are able to confirm the blazar-like nature of six BL Lac candidates. All remaining sources analyzed agree with previous classifications. BL Lac objects are certainly the most elusive type of blazars in the {gamma}-ray extragalactic sky.