- ID:
- ivo://CDS.VizieR/J/AJ/160/251
- Title:
- Radial velocities & orbital data, 5 triple stars
- Short Name:
- J/AJ/160/251
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Joint analysis of radial velocities and position measurements of five hierarchical stellar systems is undertaken to determine elements of their inner and outer orbits and, whenever possible, their mutual inclinations. The inner and outer periods are 12.9 and 345yr for HD12376 (ADS1613), 1.14 and ~1500yr for HD19971 (ADS2390), 8.3 and 475yr for HD89795 (ADS7338), 1.11 and 40yr for HD152027, 0.69 and 7.4yr for HD190412. The latter system with its coplanar and quasi-circular orbits belongs to the family of compact planetary-like hierarchies, while the orbits in HD12376 have a mutual inclination of 131{deg}.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/AJ/155/192
- Title:
- Radial velocities & photometry of AD Leonis & GJ 674
- Short Name:
- J/AJ/155/192
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070+/-120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin-orbit resonance. For such a scenario and no spin-orbit misalignment, the measured vsini indicates an inclination angle of 15.5+/-2.5{deg} and a planetary companion mass of 0.237+/-0.047 M_Jup_.
- ID:
- ivo://CDS.VizieR/J/AJ/155/126
- Title:
- Radial velocities & photometry of the K dwarf HD26965
- Short Name:
- J/AJ/155/126
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of a radial velocity signal that can be interpreted as a planetary-mass candidate orbiting the K dwarf HD 26965, with an orbital period of 42.364+/-0.015 days, or alternatively, as the presence of residual, uncorrected rotational activity in the data. Observations include data from HIRES, PFS, CHIRON, and HARPS, where 1111 measurements were made over 16 years. Our best solution for HD 26965 b is consistent with a super-Earth that has a minimum mass of 6.92+/-0.79 M_{Earth}_ orbiting at a distance of 0.215+/-0.008 au from its host star. We have analyzed the correlation between spectral activity indicators and the radial velocities from each instrument, showing moderate correlations that we include in our model. From this analysis, we recover a ~38-day signal, which matches some literature values of the stellar rotation period. However, from independent Mt. Wilson HK data for this star, we find evidence for a significant 42-day signal after subtraction of longer period magnetic cycles, casting doubt on the planetary hypothesis for this period. Although our statistical model strongly suggests that the 42-day signal is Doppler in origin, we conclude that the residual effects of stellar rotation are difficult to fully model and remove from this data set, highlighting the difficulties to disentangle small planetary signals and photospheric noise, particularly when the orbital periods are close to the rotation period of the star. This study serves as an excellent test case for future works that aim to detect small planets orbiting "Sun-like" stars using radial velocity measurements.
- ID:
- ivo://CDS.VizieR/III/239
- Title:
- Radial Velocities with Astrometric Data
- Short Name:
- III/239
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The catalogue of radial velocities of Galactic stars with high precision astrometric data (CRVAD) is the result of a merging of star lists from the General Catalog of Mean Radial Velocities (GCRV, Cat. III/213) and from the All-sky Compiled Catalogue of 2.5 Million Stars (ASCC-2.5, Cat. I/280). The cross identification of GCRV and ASCC-2.5 objects was carried out with help of coordinate, magnitude, colour and/or spectral type criteria. Data from the Catalogue of Components of Double and Multiple Stars (CCDM, Cat. I/274) were taken into account for the identification of multiple system components. 34553 stars of the ASCC-2.5 were identified with 33509 stars of the GCRV, i.e. 33509 stars of the GCRV have one entry in the ASCC-2.5, and 1044 objects have two entries. The catalogue includes accurate equatorial coordinates J2000, proper motions and trigonometric parallaxes in the Hipparcos system, B and V magnitudes in Johnson system, spectral classes, multiplicity and variability flags from the ASCC-2.5, and radial velocities, stellar magnitudes and spectra from the GCRV. Stars are sorted in right ascension J2000 order. 3967 stars were selected as radial velocity standard candidates (file rv_std.dat). These stars: - do not have any multiplicity and/or variability flags both in the GCRV and ASCC-2.5; - have standard errors of equatorial coordinates e <= 40 mas; - have standard errors of proper motions e_pm <= 4 mas/yr; - have standard errors of V magnitude e_V <= 0.05 mag and (B-V) colour e_(B-V) <= 0.07 mag; - have standard errors of radial velocity e_RV <= 2 km/s or quality index A or B, which corresponds to e_RV 0.74 and 1.78 km/s; - have at least four RV observations N_RV.
- ID:
- ivo://CDS.VizieR/J/ApJ/903/110
- Title:
- Radial velocity and g-i color in M85 globular clusters
- Short Name:
- J/ApJ/903/110
- Date:
- 15 Mar 2022
- Publisher:
- CDS
- Description:
- We present a study on the stellar population and kinematics of globular clusters (GCs) in the peculiar galaxy M85. We obtain optical spectra of 89 GCs at 8kpc<R<160kpc using the MMT/Hectospec. We divide them into three groups, blue/green/red GCs (B/G/RGCs), with their (g-i)0 colors. All GC subpopulations have mean ages of about 10Gyr, but showing differences in metallicities. The BGCs and RGCs are the most metal-poor ([Z/H]~-1.49) and metal-rich ([Z/H]~-0.45), respectively, and the GGCs are in between. We find that the inner GC system exhibits a strong overall rotation that is entirely due to a disklike rotation of the RGC system. The BGC system shows little rotation. The GGCs show kinematic properties clearly distinct among the GC subpopulations, having higher mean velocities than the BGCs and RGCs and being aligned along the major axis of M85. This implies that the GGCs have an origin different from the other GC subpopulations. The rotation-corrected velocity dispersion of the RGC system is much lower than that of the BGC system, indicating the truncation of the red halo of M85. The BGCs have a flat velocity dispersion profile out to R=67kpc, reflecting the dark matter extent of M85. Using the velocity dispersion of the BGC system, we estimate the dynamical mass of M85 to be 3.8x1012M{sun}. We infer that M85 has undergone merging events lately, resulting in the peculiar kinematics of the GC system.
- ID:
- ivo://CDS.VizieR/J/A+A/567/A69
- Title:
- Radial velocity and photometry in NGC 4372
- Short Name:
- J/A+A/567/A69
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. Using this kinematic data set we build a velocity dispersion profile and a systemic rotation curve. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a MCMC fitting algorithm. From this we derive the cluster's half-light radius and ellipticity as r_h_=3.4'+/-0.04' and e=0.08+/-0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5km/s) for its metallicity. This, however, puts it in line with two other exceptional, very metal-poor GCs - M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC M_dyn=2.0+/-0.5 x 10^5 M_Sun based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M_Sun/L_Sun, representative of an old, purely stellar population.
- ID:
- ivo://CDS.VizieR/J/AJ/156/82
- Title:
- Radial velocity characterization of TESS planets
- Short Name:
- J/AJ/156/82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The Transiting Exoplanet Survey Satellite (TESS) will conduct a two-year wide-field survey searching for transiting planets around bright stars. Many TESS discoveries will be amenable to mass characterization via ground-based radial velocity measurements with any of a growing suite of existing and anticipated velocimeters in the optical and near-infrared. In this study we present an analytical formalism to compute the number of radial velocity (RV) measurements - and hence the total observing time-required to characterize RV planet masses with the inclusion of either a white or correlated noise activity model. We use our model to calculate the total observing time required to measure all TESS planet masses from the expected TESS planet yield while relying on our current understanding of the targeted stars, stellar activity, and populations of unseen planets that inform the expected RV precision. We also present specialized calculations applicable to a variety of interesting subsets of TESS planets including the characterization of 50 planets smaller than 4 Earth radii, which is expected to take as little as 60 nights of observation. However, the efficient RV characterization of such planets requires a priori knowledge of the "best" targets, which we argue can be identified prior to the conclusion of the TESS planet search based on our calculations. Our results highlight the comparable performance of optical and near-IR spectrographs for most planet populations except for Earths and temperate TESS planets, which are more efficiently characterized in the near-IR. Lastly, we present an online tool to the community to compute the total observing times required to detect any transiting planet using a user-defined spectrograph (RVFC; http://maestria.astro.umontreal.ca/rvfc).
- ID:
- ivo://CDS.VizieR/J/PASP/118/1238
- Title:
- Radial velocity curve of RBS 490
- Short Name:
- J/PASP/118/1238
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- RBS (ROSAT Bright Source) 0490 is a cataclysmic variable star (CV) with unusually strong emission lines. The strength of the emission lines has led to a suggestion that the object is intrinsically faint and correspondingly nearby (33pc), which, if true, would strongly affect estimates of the CV space density. Here we report astrometry, filter photometry, and time-series spectroscopy of this object. The astrometry gives an absolute parallax of 4.5+/-1.5mas and a relative proper motion of 102mas/yr. A Bayesian procedure gives a very uncertain distance estimate of d~300pc, and the small parallax alone implies d>133pc (at 2 standard deviations). The mean V magnitude is 17.4, which implies M_V_=10.9-5log[d/(200pc)], neglecting extinction. At 200pc, the space velocity would be over 90km/s with respect to the local standard of rest. The time-series spectroscopy shows a possible emission-line radial velocity period near 46 minutes. This would be unusually short for an orbital period, and it may represent some other clock in the system.
- ID:
- ivo://CDS.VizieR/J/AJ/162/238
- Title:
- Radial velocity follow up of Wolf 503
- Short Name:
- J/AJ/162/238
- Date:
- 11 Mar 2022 06:30:07
- Publisher:
- CDS
- Description:
- Using radial-velocity measurements from four instruments, we report the mass and density of a 2.043{+/-}0.069R{Earth} sub-Neptune orbiting the quiet K-dwarf Wolf503 (HIP67285). In addition, we present improved orbital and transit parameters by analyzing previously unused short-cadence K2 campaign 17 photometry and conduct a joint radial-velocity-transit fit to constrain the eccentricity at 0.41{+/-}0.05. The addition of a transit observation by Spitzer also allows us to refine the orbital ephemeris in anticipation of further follow-up. Our mass determination, 6.26_-0.70_^+0.69^M{Earth} , in combination with the updated radius measurements, gives Wolf503b a bulk density of {rho}=2.92_-0.44_^+0.50^g/cm^3^. Using interior composition models, we find this density is consistent with an Earth-like core with either a substantial H_2_O mass fraction (45_-16_^+19^%) or a modest H/He envelope (0.5%{+/-}0.3%). The low H/He mass fraction, along with the old age of Wolf503 (11{+/-}2Gyr), makes this sub-Neptune an opportune subject for testing theories of XUV-driven mass loss while the brightness of its host (J=8.3mag) makes it an attractive target for transmission spectroscopy.
- ID:
- ivo://CDS.VizieR/J/AJ/162/117
- Title:
- Radial velocity for 19 RR Lyrae
- Short Name:
- J/AJ/162/117
- Date:
- 21 Mar 2022 00:54:18
- Publisher:
- CDS
- Description:
- We report 272 radial velocities for 19 RR-Lyrae variables. For most of the stars we have radial velocities for the complete pulsation cycle. These data are used to determine robust center-of-mass radial velocities that have been compared to values from the literature in a search for evidence of binary systems. Center-of-mass velocities were determined for each star using Fourier Series and template fits to the radial velocities. Our center-of-mass velocities have uncertainties from {+/-}0.16km/s to {+/-}2.5km/s, with a mean uncertainty of {+/-}0.92km/s. We combined our center-of-mass velocities with values from the literature to look for deviations from the mean center-of-mass velocity of each star. Fifteen RR-Lyrae show no evidence of binary motion (BK And, CI And, Z CVn, DM Cyg, BK Dra, RR Gem, XX Hya, SZ Leo, BX Leo, TT Lyn, CN Lyr, TU Per, U Tri, RV UMa, and AV Vir). In most cases this conclusion is reached due to the sporadic sampling of the center-of-mass velocities over time. Three RR Lyrae show suspicious variation in the center-of-mass velocities that may indicate binary motion but do not prove it (SS Leo, ST Leo, and AO Peg). TU UMa was observed by us near a predicted periastron passage (at 0.14 in orbital phase) but the absence of additional center-of-mass velocities near periastron makes the binary detection, based on radial velocities alone, uncertain. Two stars in our sample show H{gamma} emission in phases 0.9-1.0: SS Leo and TU UMa.