- ID:
- ivo://CDS.VizieR/J/A+A/659/A35
- Title:
- Spectra of IRAS 17449+2320
- Short Name:
- J/A+A/659/A35
- Date:
- 04 Mar 2022 00:58:00
- Publisher:
- CDS
- Description:
- We report the first detection of the magnetic field in a star of FS CMa type, a subgroup of objects characterized by the B[e] phenomenon. The split of magnetically sensitive lines in IRAS 17449+2320 determines the magnetic field modulus of 6.2+/-0.2kG. Spectral lines and their variability reveal the presence of a B-type spectrum and a hot continuum source in the visible. The hot source confirms GALEX UV photometry. Because there is a lack of spectral lines for the hot source in the visible, the spectral fitting gives only the lower temperature limit of the hot source, which is 50000K, and the upper limit for the B-type star of 11100K. The V/R ratio of the Halpha line shows quasiperiodic behavior on timescale of 800 days. We detected a strong red-shifted absorption in the wings of Balmer and OI lines in some of the spectra. The absorption lines of helium and other metals show no, or very small, variations, indicating unusually stable photospheric regions for FS CMa stars. We detected two events of material infall, which were revealed to be discrete absorption components of resonance lines. The discovery of the strong magnetic field together with the Gaia measurements of the proper motion show that the most probable nature of this star is that of a post-merger object created after the leaving the binary of the birth cluster. Another possible scenario is a magnetic Ap star around Terminal-Age Main Sequence (TAMS). On the other hand, the strong magnetic field defies the hypothesis that IRAS 17449+2320 is an extreme classical Be star. Thus, IRAS 17449+2320 provides a pretext for exploring a new explanation of the nature of FS CMa stars or, at least, a group of stars with very similar spectral properties.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/ApJ/900/11
- Title:
- Spectra of SN 2017eaw 545 & 900 days after explosion
- Short Name:
- J/ApJ/900/11
- Date:
- 14 Mar 2022 07:13:15
- Publisher:
- CDS
- Description:
- SN 2017eaw, the tenth supernova observed in NGC6946, was a normal Type II-P supernova with an estimated 11-13M{sun} red supergiant progenitor. Here we present nebular-phase spectra of SN 2017eaw at +545 and +900days post-max, extending approximately 50-400days past the epochs of previously published spectra. While the +545day spectrum is similar to spectra taken between days +400 and +493, the +900day spectrum shows dramatic changes both in spectral features and emission-line profiles. The H{alpha} emission is flat-topped and boxlike with sharp blue and red profile velocities of ~-8000 and +7500km/s. These late-time spectral changes indicate strong circumstellar interaction with a mass-loss shell, expelled ~1700yr before explosion. SN 2017eaw's +900day spectrum is similar to those seen for SN2004et and SN2013ej observed 2-3yr after explosion. We discuss the importance of late-time monitoring of bright SNeII-P and the nature of presupernova mass-loss events for SNII-P evolution.
- ID:
- ivo://CDS.VizieR/J/ApJ/887/115
- Title:
- Spectra of 28 stars in Price-Whelan 1 association
- Short Name:
- J/ApJ/887/115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report spectroscopic measurements of stars in the recently discovered young stellar association Price-Whelan 1 (PW1), which was found in the vicinity of the Leading Arm (LA) of the Magellanic Stream (MS). We obtained Magellan+MIKE high-resolution spectra of the 28 brightest stars in PW 1 and used The Cannon to determine their stellar parameters. We find that the mean metallicity of PW1 is [Fe/H]=-1.23 with a small scatter of 0.06dex and the mean RV is V_hel_=276.7km/s with a dispersion of 11.0km/s. Our results are consistent in T_eff_, logg, and [Fe/H] with the young and metal-poor characteristics (116Myr and [Fe/H]=-1.1) determined for PW1 from our discovery paper. We find a strong correlation between the spatial pattern of the PW1 stars and the LA II gas with an offset of -10.15{deg} in L_MS_ and +1.55{deg} in B_MS_. The similarity in metallicity, velocity, and spatial patterns indicates that PW1 likely originated in LA II. We find that the spatial and kinematic separation between LA II and PW1 can be explained by ram pressure from Milky Way (MW) gas. Using orbit integrations that account for the LMC and MW halo and outer disk gas, we constrain the halo gas density at the orbital pericenter of PW1 to be n_halo_(17kpc)=2.7_-2.0_^+3.4^x10^-3^atoms/cm^3^ and the disk gas density at the midplane at 20kpc to be n_disk_(20kpc,0)=6.0_-2.0_^+1.5^x10^-2^atoms/cm^3^. We, therefore, conclude that PW 1 formed from the LA II of the MS, making it a powerful constraint on the MW-Magellanic interaction.
- ID:
- ivo://CDS.VizieR/J/AJ/158/147
- Title:
- Spectrophotometric parallaxes with linear models
- Short Name:
- J/AJ/158/147
- Date:
- 07 Jan 2022 11:19:14
- Publisher:
- CDS
- Description:
- With contemporary infrared spectroscopic surveys like APO Galactic Evolution Experiment (APOGEE), red-giant stars can be observed to distances and extinctions at which Gaia parallaxes are not highly informative. Yet the combination of effective temperature, surface gravity, composition, and age-all accessible through spectroscopy - determines a giant's luminosity. Therefore spectroscopy plus photometry should enable precise spectrophotometric distance estimates. Here we use the overlap of APOGEE, Gaia, the Two Micron All Sky Survey (2MASS), and the Wide-field Infrared Survey Explorer (WISE) to train a data-driven model to predict parallaxes for red-giant branch stars with 0<logg=<2.2 (more luminous than the red clump). We employ (the exponentiation of) a linear function of APOGEE spectral pixel intensities and multiband photometry to predict parallax spectrophotometrically. The model training involves no logarithms or inverses of the Gaia parallaxes, and needs no cut on the Gaia parallax signal-to-noise ratio. It includes an L1 regularization to zero out the contributions of uninformative pixels. The training is performed with leave-out subsamples such that no star's astrometry is used even indirectly in its spectrophotometric parallax estimate. The model implicitly performs a reddening and extinction correction in its parallax prediction, without any explicit dust model. We assign to each star in the sample a new spectrophotometric parallax estimate; these parallaxes have uncertainties of less than 15%, depending on data quality, which is more precise than the Gaia parallax for the vast majority of targets, and certainly any stars more than a few kiloparsec distance. We obtain 10% distance estimates out to heliocentric distances of 20 kpc, and make global maps of the Milky Way's disk.
- ID:
- ivo://CDS.VizieR/J/ApJ/883/157
- Title:
- Spectrophotometric redshifts of GOODS galaxies
- Short Name:
- J/ApJ/883/157
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the accuracy of 4000{AA}/Balmer-break based redshifts by combining Hubble Space Telescope (HST) grism data with photometry. The grism spectra are from the Probing Evolution And Reionization Spectroscopically survey with HST using the G800L grism on the Advanced Camera for Surveys. The photometric data come from a compilation by the 3D-HST collaboration of imaging from multiple surveys (notably, the Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS) and 3D-HST). We show evidence that spectrophotometric redshifts (SPZs) typically improve the accuracy of photometric redshifts by ~17%-60%. Our SPZ method is a template-fitting-based routine that accounts for correlated data between neighboring points within grism spectra via the covariance matrix formalism and also accounts for galaxy morphology along the dispersion direction. We show that the robustness of the SPZ is directly related to the fidelity of the D4000 measurement. We also estimate the accuracy of continuum-based redshifts, i.e., for galaxies that do not contain strong emission lines, based on the grism data alone ({sigma}_{Delta}z/(1+z)_^NMAD^<~0.06). Given that future space-based observatories like Wide Field InfraRed Survey Telescope and Euclid will spend a significant fraction of time on slitless spectroscopic observations, we estimate number densities for objects with |{Delta}z/(1+z_s_)|<=0.02. We predict ~700-4400 galaxies degree^-2^ for galaxies with D4000>1.1 and |{Delta}z/(1+z_s_)|<=0.02 to a limiting depth of i_AB_=24mag. This is especially important in the absence of an accompanying rich photometric data set like the existing one for the CANDELS fields, where redshift accuracy from future surveys will rely only on the presence of a feature like the 4000{AA}/Balmer breaks or the presence of emission lines within the grism spectra.
- ID:
- ivo://CDS.VizieR/J/MNRAS/501/2848
- Title:
- Spectrophotometric standard cand. photometry
- Short Name:
- J/MNRAS/501/2848
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present Johnson-Kron-Cousins BVRI photometry of 228 candidate spectrophotometric standard stars for the external (absolute) flux calibration of Gaia data. The data were gathered as part of a 10-yr observing campaign with the goal of building the external grid of flux standards for Gaia and we obtained absolute photometry, relative photometry for constancy monitoring, and spectrophotometry. Preliminary releases of the flux tables were used to calibrate the first two Gaia releases. This paper focuses on the imaging frames observed in good sky conditions (about 9100). The photometry will be used to validate the ground-based flux tables of the Gaia spectrophotometric standard stars and to correct the spectra obtained in non-perfectly photometric observing conditions for small zero-point variations. The absolute photometry presented here is tied to the Landolt standard stars system to ~1 per cent or better, depending on the photometric band. Extensive comparisons with various literature sources show an overall ~1 per cent agreement, which appears to be the current limit in the accuracy of flux calibrations across various samples and techniques in the literature. The Gaia photometric precision is presently of the order of 0.1 per cent or better, thus various ideas for the improvement of photometric calibration accuracy are discussed.
- ID:
- ivo://CDS.VizieR/J/AZh/78/1135
- Title:
- Spectrophotometric standards near DE=+40{deg}
- Short Name:
- J/AZh/78/1135
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The second stage to compile a list of regional intermediate-brightness spectrophotometric standards has been completed. It includes the spectral energy distribution for 24 stars with magnitudes 7.0-8.5 near +40{deg} declination. The range 3100-7600{AA} was studied with a spectral resolution of 50{AA}. All the stars are referenced to a single standard the circumpolar star HD 221525. The energy distributions were used to compute color indices in the UBV, WBVR, and UPXYZVS systems,as well as in the system (BT,VT) of the TYCHO catalog.
- ID:
- ivo://CDS.VizieR/J/AJ/114/699
- Title:
- Spectrophotometry in open clusters
- Short Name:
- J/AJ/114/699
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Spectrophotometry is presented for 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M39. The observations were taken by Lee McDonald and David Burstein using the Wampler single-channel scanner on the Crossley 0.9m telescope at Lick Observatory from 1973 July through 1974 December. Sixteen bandpasses spanning the spectral range 3500-7780{AA} were observed for each star, with bandwidths 32, 48, or 64{AA}. Data are standardized to the Hayes-Latham system to mutual accuracy of 0.016mag per passband. The accuracy of the spectrophotometry is assessed in three ways on a star-by-star basis. First, comparisons are made with previously published spectrophotometry for 19 stars observed in common. Second, (B-V) colors and uvby colors are compared for 236 stars and 221 stars, respectively. Finally, comparisons are made for 200 main sequence stars to the spectral synthesis models of Kurucz, fixing logg=4.0 and [Fe/H]=0.0, and only varying effective temperature. The accuracy of tests using uvby colors and the Kurucz models are shown to track each other closely, yielding an accuracy estimate (1{sigma}) of 0.01mag for the 13 colors formed from bandpasses longward of the Balmer jump, and 0.02mag for the 3 colors formed from the three bandpasses below the Balmer jump. In contrast, larger scatter is found relative to the previously published spectrophotometry of Bohm-Vitense & Johnson (1977ApJS...35..461B) (16 stars in common) and Gunn & Stryker (1983, Cat. <III/88>) (3 stars). We also show that the scatter in the fits of the spectrophotometric colors and the uvby filter colors is a reasonable way to identify the observations of which specific stars are accurate to 1{sigma}, 2{sigma}, .... As such, the residuals from both the filter color fits and the Kurucz model fits are tabulated for each star where it was possible to make a comparison, so users of these data can choose stars according to the accuracy of the data that is appropriate to their needs. The very good agreement between the models and these data verifies the accuracy of these data, and also verifies the usefulness of the Kurucz models to define spectrophotometry for stars in this temperature range (>5000K). These data define accurate spectrophotometry of bright, open cluster stars that can be used as a secondary flux calibration for CCD-based spectrophotometric surveys. (c) 1997 American Astronomical Society.
- ID:
- ivo://CDS.VizieR/J/ApJ/691/1145
- Title:
- Spectrophotometry of TrES-3 and TrES-4
- Short Name:
- J/ApJ/691/1145
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report new spectroscopic and photometric observations of the parent stars of the recently discovered transiting planets TrES-3 and TrES-4. A detailed abundance analysis based on high-resolution spectra yields [Fe/H]=-0.19+/-0.08, Teff=5650+/-75K, and logg=4.4+/-0.1 for TrES-3, and [Fe/H]=+0.14+/-0.09, Teff=6200+/-75K, and logg=4.0+/-0.1 for TrES-4. The accuracy of the effective temperatures is supported by a number of independent consistency checks. The spectroscopic orbital solution for TrES-3 is improved with our new radial velocity measurements of that system, as are the light-curve parameters for both systems based on newly acquired photometry for TrES-3 and a reanalysis of existing photometry for TrES-4. With these revised stellar parameters, we obtain improved values for the planetary masses and radii. We find M_p_=1.910^+0.075^_-0.080_M_Jup_, R_p_=1.336^+0.031^_-0.036_R_Jup_ for TrES-3, and M_p_=0.925+/-0.082M_Jup_, R_p_=1.783^+0.093^_-0.086_R_Jup_ for TrES-4. We confirm TrES-4 as the planet with the largest radius among the currently known transiting hot Jupiters.
- ID:
- ivo://CDS.VizieR/J/AJ/147/16
- Title:
- Spectroscocpy of planetary nebulae in M31
- Short Name:
- J/AJ/147/16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We have developed a method to identify planetary nebula (PN) candidates in imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the SDSS's five-band sampling of emission lines in PN spectra, which results in a color signature distinct from that of other sources. Selection criteria based on this signature can be applied to nearby galaxies in which PNe appear as point sources. We applied these criteria to the whole area of M31 as scanned by the SDSS, selecting 167 PN candidates that are located in the outer regions of M31. The spectra of 80 selected candidates were then observed with the 2.2m telescope at Calar Alto Observatory. These observations and cross-checks with literature data show that our method has a selection rate efficiency of about 90%, but the efficiency is different for the different groups of PN candidates. In the outer regions of M31, PNe trace different well-known morphological features like the Northern Spur, the NGC 205 Loop, the G1 Clump, etc. In general, the distribution of PNe in the outer region 8<R<20kpc along the minor axis shows the "extended disk"-a rotationally supported low surface brightness structure with an exponential scale length of 3.21+/-0.14kpc and a total mass of ~10^10^M_{sun}_, which is equivalent to the mass of M33. We report the discovery of three PN candidates with projected locations in the center of Andromeda NE, a very low surface brightness giant stellar structure in the outer halo of M31. Two of the PNe were spectroscopically confirmed as genuine PNe. These two PNe are located at projected distances along the major axis of ~48Kpc and ~41Kpc from the center of M31 and are the most distant PNe in M31 found up to now. With the new PN data at hand we see the obvious kinematic connection between the continuation of the Giant Stream and the Northern Spur. We suggest that 20%-30% of the stars in the Northern Spur area may belong to the Giant Stream. In our data we also see a possible kinematic connection between the Giant Stream and PNe in Andromeda NE, suggesting that Andromeda NE could be the core or remnant of the Giant Stream. Using PN data we estimate the total mass of the Giant Stream progenitor to be {approx}10^9^M_{sun}_. About 90% of its stars appear to have been lost during the interaction with M31.