- ID:
- ivo://CDS.VizieR/J/A+A/590/A10
- Title:
- 3C 279 optical photometry and polarimetry
- Short Name:
- J/A+A/590/A10
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ray flares and they have attracted considerable attention, as they could allow one to probe the magnetic field structure in the gamma-ray emitting region of the jet. The flat-spectrum radio quasar 3C 279 is one of the most prominent examples showing this behaviour. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C 279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of 2008-2012. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. 3C 279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth approx. 360 deg. rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. We conclude that during the two different optical flux states, two different processes govern the polarization variation, possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/615/A103
- Title:
- CORNISH project. III. UCHII region catalogue
- Short Name:
- J/A+A/615/A103
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A catalogue of 239 ultra-compact HII regions (UCHIIs) found in the CORNISH survey at 5GHz and 1.5-arcsec resolution in the region 10{deg}<l<65{deg}, |b|<1{deg} is presented. This is the largest complete and well-selected sample of UCHIIs to date and provides the opportunity to explore the global and individual properties of this key state in massive star formation at multiple wavelengths. The nature of the candidates was validated, based on observational properties and calculated spectral indices, and the analysis is presented in this work. The physical sizes, luminosities and other physical properties were computed by utilising literature distances or calculating the distances whenever a value was not available. The near- and mid-infrared extended source fluxes were measured and the extinctions towards the UCHIIs were computed. The new results were combined with available data at longer wavelengths and the spectral energy distributions (SEDs) were reconstructed for 177 UCHIIs. The bolometric luminosities obtained from SED fitting are presented. By comparing the radio flux densities to previous observational epochs, we find about 5% of the sources appear to be time variable. This first high-resolution area survey of the Galactic plane shows that the total number of UCHIIs in the Galaxy is ~750 - a factor of 3-4 fewer than found in previous large area radio surveys. It will form the basis for future tests of models of massive star formation.
- ID:
- ivo://CDS.VizieR/J/MNRAS/480/2423
- Title:
- CORNISH project IV. Radio-selected galactic PN
- Short Name:
- J/MNRAS/480/2423
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a new radio-selected sample of PNe from the CORNISH survey. We find 90 new PNe, of which 12 are newly discovered and 78 are newly classified as PN. A further 47 previously suspected PNe are confirmed as such from the analysis presented here and 24 known PNe are detected. Eight sources are classified as possible PNe or other source types.
- ID:
- ivo://CDS.VizieR/J/A+A/626/A11
- Title:
- Corona Australis ALMA and X-Shooter data
- Short Name:
- J/A+A/626/A11
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- In recent years, the disk populations in a number of young star-forming regions have been surveyed with the Atacama Large Millimeter/submillimeter Array (ALMA). Understanding the disk properties and their correlation with the properties of the central star is critical to understanding planet formation. In particular, a decrease of the average measured disk dust mass with the age of the region has been observed, consistent with grain growth and disk dissipation. We aim to compare the general properties of disks and their host stars in the nearby (d=160pc) Corona Australis (CrA) star forming region to those of the disks and stars in other regions. We conducted high-sensitivity continuum ALMA observations of 43 Class II young stellar objects in CrA at 1.3mm (230GHz). The typical spatial resolution is 0.3''. The continuum fluxes ar e used to estimate the dust masses of the disks, and a survival analysis is performed to estimate the average dust mass. We also obtained new VLT/X-Shooter spectra for 12 of the objects in our sample for which spectral type (SpT) information was missing. Twenty-four disks were detected, and stringent limits have been put on the average dust mass of the nondetections. Taking into account the upper limits, the average disk mass in CrA is 6+/-3M_{sun}_. This value is significantly lower than that of disks in other young (1-3Myr) star forming regions (Lupus, Taurus, Chamaeleon I, and Ophiuchus) and appears to be consistent with the average disk mass of the 5-10Myr-old Upper Sco. The position of the stars in our sample on the Herzsprung-Russel diagram however seems to confirm that CrA has an age similar to Lupus. Neither external photoevaporation nor a lower-than-usual stellar mass distribution can explain the low disk masses. On the other hand, a low-mass disk population could be explained if the disks were small, which could happen if the parent cloud had a low temperature or intrinsic angular momentum, or if the angular momentum of the cloud were removed by some physical mechanism such as magnetic braking. Even in detected disks, none show clear substructures or cavities. Our results suggest that in order to fully explain and understand the dust mass distribution of protoplanetary disks and their evolution, it may also be necessary to take into consideration the initial conditions of star- and disk-formation process. These conditions at the very beginning may potentially vary from region to region, and could play a crucial role in planet formation and evolution.
- ID:
- ivo://CDS.VizieR/J/A+A/520/A66
- Title:
- CoRoT-8b light and RV curves
- Short Name:
- J/A+A/520/A66
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063+/-0.001AU. It has a radius of 0.57+/-0.02RJ, a mass of 0.22+/-0.03MJ, and therefore a mean density 1.6+/-0.1g/cm^3^. With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76g/cm^3^). We estimate its content in heavy elements to be 47-63 Earth masses, and the mass of its hydrogen-helium envelope to be 7-23 Earth masses. At 0.063AU, the thermal loss of hydrogen of CoRoT-8b should be no more than about 0.1% over an assumed integrated lifetime of 3Ga.
- ID:
- ivo://CDS.VizieR/J/A+A/491/889
- Title:
- CoRoT-Exo-3b observations
- Short Name:
- J/A+A/491/889
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The CoRoT space mission routinely provides high-precision photometric measurements of thousands of stars that have been continuously observed for months. The discovery and characterization of the first very massive transiting planetary companion with a short orbital period is reported. A series of 34 transits was detected in the CoRoT light curve of an F3V star, observed from May to October 2007 for 152 days. The radius was accurately determined and the mass derived for this new transiting, thanks to the combined analysis of the light curve and complementary ground-based observations: high-precision radial-velocity measurements, on-off photometry, and high signal-to-noise spectroscopic observations.
- ID:
- ivo://CDS.VizieR/J/A+A/523/A91
- Title:
- CoRoT/Exoplanet fields with MATISSE
- Short Name:
- J/A+A/523/A91
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The homogeneous spectroscopic determination of the stellar parameters is a mandatory step for transit detections from space. Knowledge of which population the planet hosting stars belong to places constraints on the formation and evolution of exoplanetary systems. We used the FLAMES/GIRAFFE multi-fiber instrument at ESO to spectroscopically observe samples of stars in three CoRoT/Exoplanet fields, namely the LRa01, LRc01, and SRc01 fields, and characterize their stellar populations. We present accurate atmospheric parameters, Teff, logg, [M/H], and [alpha/Fe] derived for 1227 stars in these fields using the MATISSE algorithm. The latter is based on the spectral synthesis methodology and automatically provides stellar parameters for large samples of observed spectra. We trained and applied this algorithm to FLAMES observations covering the MgIb spectral range. It was calibrated on reference stars and tested on spectroscopic samples from other studies in the literature. The barycentric radial velocities and an estimate of the vsini values were measured using cross-correlation techniques. We corrected our samples in the LRc01 and LRa01 CoRoT fields for selection effects to characterize their FGK dwarf stars population, and compiled the first unbiased reference sample for the in-depth study of planet metallicity relationship in these CoRoT fields. We conclude that the FGK dwarf population in these fields mainly exhibit solar metallicity. We show that for transiting planet finding missions, the probability of finding planets as a function of metallicity could explain the number of planets found in the LRa01 and LRc01 CoRoT fields. This study demonstrates the potential of multi-fiber observations combined with an automated classifier such as MATISSE for massive spectral classification.
- ID:
- ivo://CDS.VizieR/J/A+A/552/A60
- Title:
- CoRoT 102918586 light curve and spectra
- Short Name:
- J/A+A/552/A60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Pulsating stars in eclipsing binary systems are powerful tools to test stellar models. Binarity enables us to constrain the pulsating component physical parameters and this knowledge drastically improves the input physics for asteroseismic studies. The study of stellar oscillations then allows us to improve our understanding of stellar interiors and stellar evolution. The space mission CoRoT discovered several promising objects suitable for these studies. They were photometrically observed with unprecedented accuracy, but needed spectroscopic follow-up. A promising target was the relatively bright eclipsing system CoRoT 102918586, which turned out to be a double-lined spectroscopic binary and also showed clear evidence of Gamma Dor type pulsations. With the aim of combining the information from binarity and pulsation and fully exploiting the potential of CoRoT photometry we obtained phase resolved high-resolution spectroscopy with the Sandiford spectrograph at the McDonald 2.1m telescope and the FEROS spectrograph at the ESO 2.2m telescope. Spectroscopy yielded both the radial velocity curves and, after spectra disentangling, the component effective temperatures, metallicity, and line-of-sight projected rotational velocities. The CoRoT light curve was analyzed with an iterative procedure, devised to disentangle eclipses from pulsations. The eclipsing binary light curve analysis, combined with the spectroscopic results, provided an accurate determination of the system parameters, and the comparison with evolutionary models provided strict constraints on the system age. Finally, the residuals obtained after subtraction of the best fitting eclipsing binary model were analyzed to determine the pulsator properties. We achieved a complete and consistent description of the system. The primary star pulsates with typical gamma Dor frequencies and shows a splitting in period that is consistent with high order g-mode pulsations in a star of the corresponding physical parameters. The value of the splitting, in particular, is consistent with pulsations in l=1 modes.
- ID:
- ivo://CDS.VizieR/J/A+A/520/A108
- Title:
- CoRoT 101128793 light curves
- Short Name:
- J/A+A/520/A108
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The CoRoT (Convection, Rotation and planetary Transits) space mission provides a valuable opportunity to monitor stars with uninterrupted time sampling for up to 150 days at a time. The study of RR Lyrae stars, performed in the framework of the Additional Programmes belonging to the exoplanetary field, will particularly benefit from such dense, long-duration monitoring. We used the CoRoT data of the new RR Lyrae variable CoRoT 101128793 (f_0_=2.119c/d, P=0.4719296d) to provide us with more detailed observational facts to understand the physical process behind the Blazhko phenomenon. The CoRoT data were corrected for one jump and the long term drift. We detected 79 frequencies in the light curve of CoRoT 101128793. The timeseries presented here can be used to identify the main frequency f_0_, its harmonics, the terms related to the Blazhko frequency f_m, two independent terms, and several combination terms. All the 79 frequencies are listed in the file table1.dat. The times of maxima are listed in the file table2.dat.
- ID:
- ivo://CDS.VizieR/J/A+A/533/A4
- Title:
- CoRoT photometry of three O-type stars
- Short Name:
- J/A+A/533/A4
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The detection of pulsational frequencies in stellar photometry is required as input for asteroseismological modelling. The second short run (SRa02) of the CoRoT mission has provided photometric data of unprecedented quality and time-coverage for a number of O-type stars. We analyse the CoRoT data corresponding to three hot O-type stars, describing the properties of their light curves and we search for pulsational frequencies, which we then compare to theoretical model predictions. We determine the amplitude spectrum of the data, using the Lomb-Scargle and a multifrequency HMM-like technique. Frequencies are extracted by prewhitening, and their significance is evaluated under the assumption that the light curve is dominated by red noise. We search for harmonics, linear combinations and regular spacings among these frequencies. We use simulations with the same time sampling as the data as a powerful tool to judge the significance of our results. From the theoretical point of view, we use the MAD non-adiabatic pulsation code to determine the expected frequencies of excited modes. A substantial number of frequencies is listed, but none can be convincingly identified as being connected to pulsations. The amplitude spectrum is dominated by red noise. Theoretical modelling shows that all three O-type stars can have excited modes but the relation between the theoretical frequencies and the observed spectrum is not obvious. The dominant red noise component in the hot O-type stars studied here clearly points to a different origin than the pulsations seen in cooler O stars. The physical cause of this red noise is unclear, but we speculate on the possibility of sub-surface convection, granulation, or stellar wind inhomogeneities being responsible.