- ID:
- ivo://CDS.VizieR/J/A+A/534/A16
- Title:
- WASP-22 and WASP-26 photometry and velocities
- Short Name:
- J/A+A/534/A16
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on spectroscopic and photometric observations through transits of the exoplanets WASP-22b and WASP-26b, intended to determine the systems' spin-orbit angles. We combine these data with existing data to refine the system parameters. We measure a sky-projected spin-orbit angle of 22+/-16 degrees for WASP-22b, showing the planet's orbit to be prograde and, perhaps, slightly misaligned. We do not detect the Rossiter-McLaughlin effect of WASP-26b due to its low amplitude and observation noise. We place 3-sigma upper limits on orbital eccentricity of 0.063 for WASP-22b and 0.050 for WASP-26b. After refining the drift in the systemic velocity of WASP-22 found by Maxted et al. (2010AJ....140.2007M), we find the third body in the system to have a separation-scaled minimum-mass of 5.3+/-0.3M_Jup_ (a3/5AU)^2^, where a3 is the orbital separation of the third body.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/547/A61
- Title:
- WASP78 and WASP79 RV and photometric data
- Short Name:
- J/A+A/547/A61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of WASP-78b and WASP-79b, two highly-bloated Jupiter-mass exoplanets orbiting F-type host stars. WASP-78b orbits its V=12.0 host star (TYC 5889-271-1) every 2.175 days and WASP-79b orbits its V=10.1 host star (CD-30 1812) every 3.662 days. Planetary parameters have been determined using a simultaneous fit to WASP and TRAPPIST transit photometry and CORALIE radial-velocity measurements. For WASP-78b a planetary mass of 0.89+/-0.08M_Jup_ and a radius of 1.70+/-0.11R_Jup_ is found. The planetary equilibrium temperature of T_P_=2350+/-80K for WASP-78b makes it one of the hottest of the currently known exoplanets. WASP-79b its found to have a planetary mass of 0.90+/-0.08M_Jup_, but with a somewhat uncertain radius due to lack of sufficient TRAPPIST photometry. The planetary radius is at least 1.70+/-0.11R_Jup_, but could be as large as 2.09+/-0.14R_Jup_, which would make WASP-79b the largest known exoplanet.
- ID:
- ivo://CDS.VizieR/J/A+A/636/A98
- Title:
- WASP-18A, WASP-19, WASP-77A photometry
- Short Name:
- J/A+A/636/A98
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present 22 new transit observations of the exoplanets WASP-18Ab, WASP-19b, and WASP-77Ab, from the Transit Monitoring in the South (TraMoS) project. We simultaneously model our newly collected transit light curves with archival photometry and radial velocity data to obtain refined physical and orbital parameters. We include TESS light curves of the three exoplanets to perform an extended analysis of the variations in their transit mid-time (TTV) and to refine their planetary orbital ephemeris. We did not find significant TTVRMS variations larger than 47, 65, and 86 seconds for WASP-18Ab, WASP-19b, and WASP-77Ab, respectively. Dynamical simulations were carried out to constrain the masses of a possible perturber. The observed mean square (RMS) could be produced by a perturber body with an upper limit mass of 9, 2.5, 11 and 4M_{Earth}_ in 1:2, 1:3, 2:1, and 3:1 resonances in the WASP-18Ab system. In the case of WASP-19b, companions with masses up to 0.26, 0.65, 1, and 2.8M_{Earth}_, in 1:2, 2:1, 3:1, and 5:3 resonances respectively, produce the RMS. For the WASP-77Ab system, this RMS could be produced by a planet with mass in the range of 1.5-9M_{Earth}_ in 1:2, 1:3, 2:1, 2:3, 3:1, 3:5, or 5:3 resonances. Comparing our results with RV variations, we discard massive companions with 350M_{Earth}_ in 17:5 resonance for WASP-18Ab, 95M_{Earth}_ in 4:1 resonance for WASP-19b, and 105M_{Earth}_ in 5:2 resonance for WASP-77Ab. Finally, using a Lomb-Scargle period search we find no evidence of a periodic trend on our TTV data for the three exoplanets.
- ID:
- ivo://CDS.VizieR/J/A+A/630/A89
- Title:
- WASP-12b and WASP-43b griz light curves
- Short Name:
- J/A+A/630/A89
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The TESS and PLATO missions are expected to find vast numbers of new transiting planet candidates. However, only a fraction of these candidates will be legitimate planets, and the candidate validation will require a significant amount of follow-up resources. Radial velocity (RV) follow-up study can be carried out only for the most promising candidates around bright, slowly rotating, stars. Thus, before devoting RV resources to candidates, they need to be vetted using cheaper methods, and, in the cases for which an RV confirmation is not feasible, the candidate's true nature needs to be determined based on these alternative methods alone. We study the applicability of multicolour transit photometry in the validation of transiting planet candidates when the candidate signal arises from a real astrophysical source (transiting planet, eclipsing binary, etc.), and not from an instrumental artefact. Particularly, we aim to answer how securely we can estimate the true uncontaminated star-planet radius ratio when the light curve may contain contamination from unresolved light sources inside the photometry aperture when combining multicolour transit observations with a physics-based contamination model in a Bayesian parameter estimation setting. More generally, we study how the contamination level, colour differences between the planet host and contaminant stars, transit signal-to-noise ratio, and available prior information affect the contamination and true radius ratio estimates. The study is based on simulations and ground-based multicolour transit observations. The contamination analyses were carried out with a contamination model integrated into the PYTRANSIT V2 transit modelling package, and the observations were carried out with the MuSCAT2 multicolour imager installed in the 1.5m Telescopio Carlos Sanchez in the Teide Observatory, in Tenerife. We show that multicolour transit photometry can be used to estimate the amount of flux contamination and the true radius ratio. Combining the true radius ratio with an estimate for the stellar radius yields the true absolute radius of the transiting object, which is a valuable quantity in statistical candidate validation, and enough in itself to validate a candidate whose radius falls below the theoretical lower limit for a brown dwarf.
- ID:
- ivo://CDS.VizieR/J/A+A/552/A82
- Title:
- WASP-64b and WASP-72b light curves
- Short Name:
- J/A+A/552/A82
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery by the WASP transit survey of two new highly irradiated giant planets. WASP-64 b is slightly more massive (1.271+/-0.068M_Jup_) and larger (1.271+/-0.039R_Jup_) than Jupiter, and is in very-short (a=0.02648+/-0.00024AU, P=1.5732918+/-0.0000015-days) circular orbit around a V=12.3 G7-type dwarf (1.004+/-0.028M_{sun}_, 1.058+/-0.025R_{sun}_, Teff=5500+/-150K). Its size +0.059 is typical of hot Jupiters with similar masses. WASP-72 b has also a mass a bit higher than Jupiter's (1.461-0.056M_Jup_) and orbits very close (0.03708+/-0.00050AU, P=2.2167421+/-0.0000081days) to a bright (V=9.6) and moderately evolved F7-type star (1.386+/-0.055M_{sun}_, 1.98+/-0.24R_{sun}_, Teff=6250+/-100K). Despite its extreme irradiation (~5.5x10^9^erg/s/cm^2^), WASP-72 b has a moderate size (1.27+/-0.20R_Jup_) that could suggest a significant enrichment in heavy elements. Nevertheless, the errors on its physical parameters are still too high to draw any strong inference on its internal structure or its possible peculiarity.
- ID:
- ivo://CDS.VizieR/J/PASP/127/143
- Title:
- WASP-39b and WASP-43b light curves
- Short Name:
- J/PASP/127/143
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present photometric light-curves of the transiting extrasolar planets WASP-39b and WASP-43b obtained with three San Pedro Martir telescopes by using the defocused photometry technique.
- ID:
- ivo://CDS.VizieR/J/A+A/570/A64
- Title:
- WASP-104b and WASP-106b photometry
- Short Name:
- J/A+A/570/A64
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29d. Each planet is more massive than Jupiter (WASP-104b has a mass of 1.27+/-0.05M_Jup_, while WASP-106b has a mass of 1.93+/-0.08M_Jup_). Both planets are just slightly larger than Jupiter, with radii of 1.14+/-0.04 and 1.09+/-0.04R_Jup_ for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits.
- ID:
- ivo://CDS.VizieR/J/A+A/575/A61
- Title:
- WASP-20b and WASP-28b photometry and RV
- Short Name:
- J/A+A/575/A61
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of the planets WASP-20b and WASP-28b along with measurements of their sky-projected orbital obliquities. WASP-20b is an inflated, Saturn-mass planet (0.31M_Jup_; 1.46R_Jup_) in a 4.9-day, near-aligned (lambda=12.7+/-4.2{deg}) orbit around CD-24 102 (V=10.7; F9). Due to the low density of the planet and the apparent brightness of the host star, WASP-20 is a good target for atmospheric characterisation via transmission spectroscopy. WASP-28b is an inflated, Jupiter-mass planet (0.91M_Jup_; 1.21R_Jup_) in a 3.4-day, near-aligned (lambda=8+/-18{deg}) orbit around a V=12, F8 star. As intermediate-mass planets in short orbits around aged, cool stars (7^+2^_-1_Gyr and 6000+/-100K for WASP-20; 5^+3^_-2_Gyr and 6100+/-150K for WASP-28), their orbital alignment is consistent with the hypothesis that close-in giant planets are scattered into eccentric orbits with random alignments, which are then circularised and aligned with their stars' spins via tidal dissipation.
- ID:
- ivo://CDS.VizieR/J/MNRAS/482/301
- Title:
- WASP-147b, 160Bb, 164b, and 165b phot. and RV
- Short Name:
- J/MNRAS/482/301
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report the discovery of four transiting hot Jupiters, WASP-147, WASP-160B, WASP-164, and WASP-165 from the WASP survey. WASP-147b is a near Saturn-mass (Mp=0.28M_J_) object with a radius of 1.11R_J_ orbiting a G4 star with a period (of 4.6d. WASP-160Bb has a mass and radius (Mp=0.28M_J_, Rp=1.09R_J_) (near-identical to WASP-147b, but is less irradiated, orbiting a metal-rich ([Fe/H]*=0.27) K0 star with a period of 3.8d. WASP-160B is part of a near equal-mass visual binary with an on-sky separation of 28.5 arcsec. WASP-164b is a more massive (Mp=2.13M_J_, Rp=1.13R_J_) hot Jupiter, orbiting a G2 star on a close-in (P=1.8d), but tidally stable orbit. WASP-165b is a classical (Mp=0.66M_J_, Rp=1.26R_J_) hot Jupiter in a 3.5d period orbit around a metal-rich ([Fe/H]*=0.33) star. WASP-147b and WASP-160Bb are promising targets for atmospheric characterization through transmission spectroscopy, while WASP-164b presents a good target for emission spectroscopy.
- ID:
- ivo://CDS.VizieR/J/A+A/587/A67
- Title:
- WASP-49b FORS2 multi-epoch spectra
- Short Name:
- J/A+A/587/A67
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Transmission spectroscopy has proven to be a useful tool for the study of exoplanet atmospheres, because the absorption and scattering signatures of the atmosphere manifest themselves as variations in the planetary transit depth. Several planets have been studied with this technique, leading to the detection of a small number of elements and molecules (Na, K, H_2_O), but also revealing that many planets show flat transmission spectra consistent with the presence of opaque high-altitude clouds. We apply this technique to the Mp=0.40 M_jup_, Rp=1.20R_jup_, P=2.78d planet WASP-49b, aiming to characterize its transmission spectrum between 0.73 and 1um and search for the features of K and H_2_O. Owing to its density and temperature, the planet is predicted to possess an extended atmosphere and is thus a good target for transmission spectroscopy. Three transits of WASP-49b have been observed with the FORS2 instrument installed at the VLT/UT1 telescope at the ESO Paranal site. We used FORS2 in MXU mode with grism GRIS_600z, producing simultaneous multiwavelength transit light curves throughout the i' and z' bands. We combined these data with independent broadband photometry from the Euler and TRAPPIST telescopes to obtain a good measurement of the transit shape. Strong correlated noise structures are present in the FORS2 light curves, which are due to rotating flat-field structures that are introduced by inhomogeneities of the linear atmospheric dispersion corrector's transparency. We accounted for these structures by constructing common noise models from the residuals of light curves bearing the same noise structures and used them together with simple parametric models to infer the transmission spectrum. We present three independent transmission spectra of WASP-49b between 0.73 and 1.02um, as well as a transmission spectrum between 0.65 and 1.02um from the combined analysis of FORS2 and broadband data. The results obtained from the three individual epochs agree well. The transmission spectrum of WASP-49b is best fit by atmospheric models containing a cloud deck at pressure levels of 1mbar or lower.