- ID:
- ivo://CDS.VizieR/J/ApJ/654/316
- Title:
- X-ray sources in IC 1396N
- Short Name:
- J/ApJ/654/316
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The IC 1396N cometary globule (CG) within the large nearby HII region IC 1396 has been observed with the ACIS detector on board the Chandra X-Ray Observatory. We detect 117 X-ray sources, of which ~50-60 are likely members of the young open cluster Trumpler 37 dispersed throughout the HII region, and 25 are associated with young stars formed within the globule. Infrared photometry (2MASS and Spitzer) shows that the X-ray population is very young: 3 older Class III stars, 16 classical T Tauri stars, and 6 protostars including a Class 0/I system.
Number of results to display per page
Search Results
8282. X-ray sources in NGC 752
- ID:
- ivo://CDS.VizieR/J/A+A/490/113
- Title:
- X-ray sources in NGC 752
- Short Name:
- J/A+A/490/113
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- While observational evidence shows that most of the decline in a star's X-ray activity occurs between the age of the Hyades (~8x10^8yr) and that of the Sun, very little is known about the evolution of stellar activity between these ages. To gain information on the typical level of coronal activity at a star's intermediate age, we studied the X-ray emission from stars in the 1.9Gyr old open cluster NGC 752. We analysed a ~140ks Chandraobservation of NGC 752 and a ~50ks XMM-Newtonobservation of the same cluster. We detected 262 X-ray sources in the Chandra data and 145 sources in the XMM-Newton observation. Around 90% of the catalogued cluster members within Chandra's field-of-view are detected in the X-ray. The X-ray luminosity of all observed cluster members (28 stars) and of 11 cluster member candidates was derived.
- ID:
- ivo://CDS.VizieR/J/A+A/477/147
- Title:
- X-ray sources in Westerlund 1
- Short Name:
- J/A+A/477/147
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We investigate the nature of the X-ray point source population within the Young Massive Cluster Westerlund 1. Chandra observations of 18 ks and 42 ks were used to determine the X-ray properties of emitters within Wd 1, while a comprehensive multiwavelength dataset was employed to constrain their nature. We find X-ray emission from a multitude of different stellar sources within Wd 1, including both evolved high mass and low mass pre-MS stars.
- ID:
- ivo://CDS.VizieR/J/AJ/162/92
- Title:
- 126 X-rays sources around the cepheid {eta} Aql
- Short Name:
- J/AJ/162/92
- Date:
- 14 Mar 2022 07:02:20
- Publisher:
- CDS
- Description:
- X-ray bursts have recently been discovered in the Cepheids {delta}Cep and {beta}Dor modulated by the pulsation cycle. We have obtained an observation of the Cepheid {eta}Aql with the XMM-Newton satellite at the phase of maximum radius; the phase at which there is a burst of X-rays in {delta}Cep. No X-rays were seen from the Cepheid {eta}Aql at this phase, and the implications for Cepheid upper atmospheres are discussed. We have also used the combination of X-ray sources, as well as Gaia and 2MASS data, to search for a possible grouping around the young intermediate mass Cepheid. No indication of such a group was found.
- ID:
- ivo://CDS.VizieR/J/MNRAS/426/2917
- Title:
- X-rays sources in Trumpler 37
- Short Name:
- J/MNRAS/426/2917
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Rich young stellar clusters produce HII regions whose expansion into the nearby molecular cloud is thought to trigger the formation of new stars. However, the importance of this mode of star formation is uncertain. This investigation seeks to quantify triggered star formation (TSF) in IC 1396A (aka the Elephant Trunk Nebula), a bright-rimmed cloud (BRC) on the periphery of the nearby giant HII region IC 1396 produced by the Trumpler 37 cluster. X-ray selection of young stars from Chandra X-ray Observatory data is combined with existing optical and infrared surveys to give a more complete census of the TSF population. Over 250 young stars in and around IC 1396A are identified; this doubles the previously known population. A spatio-temporal gradient of stars from the IC 1396A cloud towards the primary ionizing star HD 206267 is found.
- ID:
- ivo://CDS.VizieR/J/ApJ/865/43
- Title:
- X-ray stacking analysis of Chandra-COSMOS gal.
- Short Name:
- J/ApJ/865/43
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an X-ray stacking analysis of ~75000 star-forming galaxies between 0.1<z<5.0 using the Chandra COSMOS-Legacy survey to study the X-ray emission of low-luminosity active galactic nuclei (AGN) and its connection to host galaxy properties. The stacks at z<0.9 have luminosity limits as low as 10^40^-10^41^erg/s, a regime in which X-ray binaries (XRBs) can dominate the X-ray emission. Comparing the measured luminosities to established XRB scaling relations, we find that the redshift evolution of the luminosity per star formation rate (SFR) of XRBs depends sensitively on the assumed obscuration and may be weaker than previously found. The XRB scaling relation based on stacks from the Chandra Deep Field South overestimates the XRB contribution to the COSMOS high specific SFR stacks, possibly due to a bias affecting the CDF-S stacks because of their small galaxy samples. After subtracting the estimated XRB contribution from the stacks, we find that most stacks at z>1.3 exhibit a significant X-ray excess indicating nuclear emission. The AGN emission is strongly correlated with stellar mass but does not exhibit an additional correlation with SFR. The hardness ratios of the high-redshift stacks indicate that the AGN are substantially obscured (N_H_~10^23^cm^-2^). These obscured AGN are not identified by IRAC color selection and have L_X_~10^41^-10^43^erg/s, consistent with accretion at an Eddington rate of ~10^-3^ onto 10^7^-10^8^M_{sun}_ black holes. Combining our results with other X-ray studies suggests that AGN obscuration depends on stellar mass and an additional variable, possibly the Eddington rate.
- ID:
- ivo://CDS.VizieR/J/ApJS/168/100
- Title:
- X-ray study of star-forming region NGC 6357
- Short Name:
- J/ApJS/168/100
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first high spatial resolution X-ray study of the massive star-forming region NGC 6357, obtained in a 38ks Chandra/ACIS observation. Inside the brightest constituent of this large HII region complex is the massive open cluster Pismis 24. It contains two of the brightest and bluest stars known, yet remains poorly studied; only a handful of optically bright stellar members have been identified. We investigate the cluster extent and initial mass function and detect ~800 X-ray sources with a limiting sensitivity of ~10^30^ergs/s; this provides the first reliable probe of the rich intermediate-mass and low-mass population of this massive cluster, increasing the number of known members from optical study by a factor of ~50.
- ID:
- ivo://CDS.VizieR/J/A+A/602/A115
- Title:
- X-ray survey of NGC7000/IC5070
- Short Name:
- J/A+A/602/A115
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present the first extensive X-ray study of the North-America and Pelican star-forming region (NGC7000/IC5070), with the aim of finding and characterizing the young population of this cloud. X-ray data from Chandra (four pointings) and XMM-Newton (seven pointings) were reduced and source detection algorithm applied to each image. We complement the X-ray data with optical and near-IR data from the IPHAS, UKIDSS, and 2MASS catalogs, and with other published optical and Spitzer IR data. More than 700 X-ray sources are detected, the majority of which have an optical or NIR counterpart. This allowed us to identify young stars in different stages of formation. Less than 30% of X-ray sources are identified with a previously known young star. We argue that most X-ray sources with an optical or NIR counterpart, except perhaps for a few tens at near-zero reddening, are likely candidate members of the star-forming region, on the basis of both their optical and NIR magnitudes and colors, and of X-ray properties such as spectrum hardness or flux variations. They are characterized by a wide range of extinction, and sometimes near-IR excesses, both of which prevent derivation of accurate stellar parameters. The optical color-magnitude diagram suggests ages between 1-10Myrs. The X-ray members have a very complex spatial distribution with some degree of subclustering, qualitatively similar to that of previously known members. The detailed distribution of X-ray sources relative to the objects with IR excesses identified with Spitzer is sometimes suggestive of sequential star formation, especially near the 'Gulf of Mexico' region, probably triggered by the O5 star which illuminates the whole region. We confirm that around the O5 star no enhancement in the young star density is found, in agreement with previous results. Thanks to the precision and depth of the IPHAS and UKIDSS data used, we also determine the local optical-IR reddening law, and compute an updated reddening map of the entire region.
- ID:
- ivo://CDS.VizieR/J/ApJ/768/99
- Title:
- X-ray survey of YSOs in Orion A
- Short Name:
- J/ApJ/768/99
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present an XMM-Newton survey of the part of the Orion A cloud south of the Orion Nebula. This survey includes the Lynds 1641 (L1641) dark cloud, a region of the Orion A cloud with very few massive stars and hence a relatively low ambient UV flux, and the region around the O9III star {iota} Orionis. In addition to proprietary data, we used archival XMM data of the Orion Nebula Cluster (ONC) to extend our analysis to a major fraction of the Orion A cloud. We have detected 1060 X-ray sources in L1641 and the {iota} Ori region. About 94% of the sources have Two Micron All Sky Survey and Spitzer counterparts, 204 and 23 being Class II and Class I or protostar objects, respectively. In addition, we have identified 489 X-ray sources as counterparts to Class III candidates, given they are bright in X-rays and appear as normal photospheres at mid-IR wavelengths. The remaining 205 X-ray sources are likely distant active galactic nuclei or other galactic sources not related to Orion A. We find that Class III candidates appear more concentrated in two main clusters in L1641. The first cluster of Class III stars is found toward the northern part of L1641, concentrated around {iota} Ori. The stars in this cluster are more evolved than those in the Orion Nebula. We estimate a distance of 300-320 pc for this cluster showing that it is in the foreground of the Orion A cloud. Another cluster rich in Class III stars is located in L1641 South and appears to be a slightly older cluster embedded in the Orion A cloud. Furthermore, other evolved Class III stars are found north of the ONC toward NGC 1977.
- ID:
- ivo://CDS.VizieR/J/ApJ/788/48
- Title:
- X-ray through NIR photometry of NGC 2617
- Short Name:
- J/ApJ/788/48
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the H{beta} line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4+/-1)x10^7^ M_{sun}_. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.