USNO-B1.0 (Cat. I/284) and 2MASS (Cat. II/246) are the most widely used full-sky surveys. However, 2MASS has no proper motions at all, and USNO-B1.0 published only relative, not absolute (i.e. on ICRS) proper motions. We performed a new determination of mean positions and proper motions on the ICRS system by combining USNO-B1.0 and 2MASS astrometry. This catalog is called PPMXL, and it aims to be complete from the brightest stars down to about V=20 full-sky. PPMXL contains about 900 million objects, some 410 million with 2MASS photometry, and is the largest collection of ICRS proper motions at present. As representative for the ICRS we chose PPMX. The recently released UCAC3 (Cat. I/315) could not be used because we found plate-dependent distortions in its proper motion system north of -20{deg} declination. UCAC3 served as an intermediate system for {demta}<-20{deg}. The resulting typical individual mean errors of the proper motions range from 4mas/yr to more than 10mas/yr depending on observational history. The mean errors of positions at epoch 2000.0 are 80 to 120 mas, if 2MASS astrometry could be used, 150 to 300 mas else. We also give correction tables to convert USNO-B1.0 observations of e.g. minor planets to the ICRS system.
The Sco OB2 association is the nearest OB association, extending over approximately 2000 square degrees on the sky. Only its brightest and most massive members are already known (from HIPPARCOS) across its entire size, while studies of its lower mass population refer only to small portions of its extent. In this work we exploit the capabilities of Gaia DR2 measurements to search for Sco OB2 members across its entire size and down to the lowest stellar masses. We used both Gaia astrometric (proper motions and parallaxes) and photometric measurements (integrated photometry and colors) to select association members, using minimal assumptions derived mostly from the HIPPARCOS studies. Gaia resolves small details in both the kinematics of individual Sco OB2 subgroups and their distribution with distance from the Sun. We developed methods to explore the 3D kinematics of a stellar population covering large sky areas. We find nearly 11000 pre-main-sequence (PMS) members of Sco OB2 (with less than 3% field-star contamination), plus ~3600 main-sequence (MS) candidate members with a larger (10-30%) field-star contamination. A higher confidence subsample of ~9200 PMS (and ~1340 MS) members is also selected (<1% contamination for the PMS), however this group is affected by larger (~15%) incompleteness. We separately classify stars in compact and diffuse populations. Most members belong to one of several kinematically distinct diffuse populations, whose ensemble clearly outlines the shape of the entire association. Upper Sco is the densest region of Sco OB2. It is characterized by a complex spatial and kinematical structure and has no global pattern of motion. Other dense subclusters are found in Lower Centaurus-Crux and in Upper Centaurus-Lupus; the richest example of the latter, which has been recently identified, is coincident with the group near V1062 Sco. Most of the clustered stars appear to be younger than the diffuse PMS population, suggesting star formation in small groups that rapidly disperse and are diluted, reaching space densities lower than field stars while keeping memory of their original kinematics. We also find that the open cluster IC 2602 has a similar dynamics to Sco OB2, and its PMS members are currently evaporating and forming a diffuse (size~10{deg}) halo around its double-peaked core.
Stellar clusters are open windows to understand stellar evolution. Specifically, the change with time and the dependence on mass of different stellar properties. As such, they are our laboratories where different theories can be tested. We try to understand the origin of the connection between lithium depletion in F, G and K stars, rotation and activity, in particular in the Pleiades open cluster. We have collected all the relevant data in the literature, including information regarding rotation period, binarity and activity, and cross-matched with proper motions, multi-wavelength photometry and membership probability from the DANCe database. In order to avoid biases, only Pleiades single members with probabilities larger than 75% have been included in the discussion. Results. The analysis confirms that there is a strong link between activity, rotation and the lithium equivalent width excess, specially for the range Lum(bol)=0.5-0.2L_{sun}_ (about K2-K7 spectral types or 0.75-0.95M_{sun}_). It is not possible to disentangle these effects but we cannot exclude that the observed lithium overabundance is partially an observational effect due to enhanced activity, due to a large coverage by stellar spots induced by high rotation rates. Since a bona fide lithium enhancement is present in young, fast rotators, both activity and rotation should play a role in the lithium problem.
The DANCe survey provides photometric and astrometric (position and proper motion) measurements for approximately 2 millions unique sources in a region encompassing approximately 80deg^2^ centered around the Pleiades cluster. We aim at deriving a complete census of the Pleiades, and measure the mass and luminosity function of the cluster. Using the probabilistic selection method described in Sarro et al. (2014A&A...563A..45S, Cat. J/A+A/563/A45), we identify high probability members in the DANCe (i>14mag) and Tycho-2 (V<12mag) catalogues, and study the properties of the cluster over the corresponding luminosity range. We find a total of 2109 high probability members, of which 812 are new, making it the most extensive and complete census of the cluster to date. The luminosity and mass functions of the cluster are computed from the most massive members down to 0.025M_{sun}_. The size, sensitivity and quality of the sample result in the most precise luminosity and mass functions observed to date for a cluster. Our census supersedes previous studies of the Pleiades cluster populations, both in terms of sensitivity and accuracy.
We have conducted a novel search of most of the southern sky for nearby red dwarfs having low proper motions, with specific emphasis on those with {mu}<0.18"/yr, the lower cutoff of Luyten's classic proper-motion catalog. We used a tightly constrained search of the SuperCOSMOS database and a suite of photometric distance relations for photographic BRI and 2MASS JHK_s_ magnitudes to estimate distances to more than 14 million red dwarf candidates. Here we discuss 29 stars in 26 systems estimated to be within 25 pc, all of which have {mu}<0.18"/yr, that we have investigated using milliarcsecond astrometry, VRI photometry, and low-resolution spectroscopy. In total, we present the first parallaxes of 20 star systems, 9 of which are within 25 pc. We have additionally identified 14 young M dwarfs, of which 3 are new members of the nearby young moving groups, and 72 new giants, including two new carbon stars. We also present the entire catalog of 1215 sources we have identified by this means.
The solar neighborhood. XLII. New nearby subdwarfs
Short Name:
J/AJ/154/191
Date:
21 Oct 2021
Publisher:
CDS
Description:
Parallaxes, proper motions, and optical photometry are presented for 51 systems consisting of 37 cool subdwarf and 14 additional high proper motion systems. Thirty-seven systems have parallaxes reported for the first time, 15 of which have proper motions of at least 1"/yr. The sample includes 22 newly identified cool subdwarfs within 100 pc, of which three are within 25 pc, and an additional five subdwarfs from 100 to 160 pc. Two systems-LSR 1610-0040 AB and LHS 440 AB-are close binaries exhibiting clear astrometric perturbations that will ultimately provide important masses for cool subdwarfs. We use the accurate parallaxes and proper motions provided here, combined with additional data from our program and others, to determine that effectively all nearby stars with tangential velocities greater than 200 km/s are subdwarfs. We compare a sample of 167 confirmed cool subdwarfs to nearby main sequence dwarfs and Pleiades members on an observational Hertzsprung-Russell diagram using M_V_ versus (V-K_s_) to map trends of age and metallicity. We find that subdwarfs are clearly separated for spectral types K5-M5, indicating that the low metallicities of subdwarfs set them apart in the H-R diagram for (V-K_s_)=3-6. We then apply the tangential velocity cutoff and the subdwarf region of the H-R diagram to stars with parallaxes from Gaia Data Release 1 and the MEarth Project to identify a total of 29 new nearby subdwarf candidates that fall clearly below the main sequence.
We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long-term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems-including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf-have trigonometric parallaxes greater than 100 mas, with errors of 0.4-2.4 mas in all but one case. We provide updated astrometric, photometric (VRIJHK magnitudes), spectral type, and multiplicity information here. Among these are 14 systems that are new entries to the 10 pc sample, including the first parallaxes for 9 systems and new values for 5 systems that had previous parallaxes with errors greater than 10 mas or values placing them beyond 10 pc. We also provide new data for 22 systems known to lie within 10 pc and 9 systems reported to be closer than that horizon but for which new parallaxes place them further away, bringing the total to 75 systems. The 44 systems added by RECONS comprise one of every 7 systems known within 10 pc. We illustrate the evolution of the 10 pc sample from the 191 systems known when the final Yale Parallax Catalog was published in 1995 to the 317 systems known today. Even so close to the Sun, additional discoveries of white, red, and brown dwarfs are possible, both as primaries and secondaries, although we estimate that at least 90% of the stellar systems closer than 10 pc have now been identified.
We use 20yr of astrometric data from the REsearch Consortium On Nearby Stars (RECONS) program on the Cerro Tololo Inter-American Observatory/SMARTS 0.9m telescope to provide new insight into multiple star systems in the solar neighborhood. We provide new and updated parallaxes for 210 systems and derive nine high-quality astrometric orbits with periods of 2.49-16.63yr. Using a total of 542 systems parallaxes from RECONS, we compare systems within 25pc to Gaia DR2 to define criteria for selecting unresolved astrometric multiples from the DR2 results. We find that three out of four unresolved multistar red dwarf systems within 25pc in DR2 have parallax_error >=0.32mas, astrometric_gof_al>=56, astrometric_excess-noise_sig>=108.0, ruwe>=2.0, and parallaxes more than ~10% different from the long-term RECONS results. These criteria have broad applications to any work targeting nearby stars, from studies seeking binary systems to efforts targeting single stars for planet searches.
As a step toward completing and characterizing the census of the solar neighborhood, we present astrometric, photometric, and spectroscopic observations of 32 systems observed with the Cerro Tololo Inter-American Observatory 0.9 m and 1.5 m telescopes. Astrometry from the 0.9 m indicates that among the 17 systems that had no previous published trigonometric parallaxes, 14 are within 25 pc. In the full sample, nine systems have proper motions larger than 0.5"/yr, including 2MASS J02511490-0352459, which exceeds 2.0"/yr. VRI photometry from the 0.9 m and optical spectra from the 1.5 m indicate that the targets have V=11-22 mag and spectral types M3.0V-L3.0V. For 2MASS J23062928-0502285 (TRAPPIST-1), we present updated astrometry and photometric variability based on over 12 years of observations. Of the nine binaries in the sample, two promise mass determinations in the next decade: LHS 6167AB, an M4.5V system for which we present an accurate parallax placing the binary at 9.7 pc, and 2MASS J23515048-2537367AB, an M8.5V system at 21.1 pc for which we present the first evidence of an unseen, low-mass companion. Most importantly, Na I and K I gravity indicators, H{alpha} measurements, long-term photometric variability, locations on the H-R diagram, and kinematic assessments indicate that as many as 13 of the systems are young, including candidate members of young moving groups, with ages less than ~120 Myr.
The ~200000 targets monitored for photometric variability during the Kepler prime mission include the best-studied group of stars in the sky, due both to the extensive time history provided by Kepler and to the substantial amount of ancillary data provided by other investigators or compiled by the Kepler team. To complement this wealth of data, we surveyed the entire Kepler field using the 3.6 and 4.5{mu}m bands of the Warm Spitzer Space Telescope, obtaining photometry in both bands for almost 170000 objects. We demonstrate relative photometric precision ranging from better than ~1.5% for the brighter stars down to slightly greater than ~2% for the faintest stars monitored by Kepler. We describe the data collection and analysis phases of this work and identify several stars with large infrared excess, although none that is also known to be the host of an exoplanetary system.