- ID:
- ivo://CDS.VizieR/J/A+A/643/A146
- Title:
- The solar gravitational redshift
- Short Name:
- J/A+A/643/A146
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The General Theory of Relativity predicts the redshift of spectral lines in the solar photosphere, as a consequence of the gravitational potential of the Sun. This effect can be measured from a solar disk-integrated flux spectrum of the Sun's reflected light on solar system bodies. The laser frequency comb (LFC) calibration system attached to the HARPS spectrograph offers the possibility to perform an accurate measurement of the solar gravitational redshift (GRS) by observing the Moon or other solar system bodies. We have analysed the line shift observed in Fe absorption lines from five high-quality HARPS-LFC spectra of the Moon. We select an initial sample of 326 photospheric Fe lines in the spectral range 476-585nm and measure their line positions and equivalent widths (EWs). Accurate line shifts are derived from the wavelength position of the core of the lines compared with the laboratory wavelengths of Fe lines. We also use a CO^5^BOLD 3D hydrodynamical model atmosphere of the Sun to compute 3D synthetic line profiles of a subsample of about 200 spectral Fe lines centred at their laboratory wavelengths. We fit the observed relatively weak spectral Fe lines (with EW<180m{AA}) with the 3D synthetic profiles. Convective motions in the solar photosphere do not affect the line cores of Fe lines stronger than about 150m{AA}. In our sample, only 15 FeI lines have EWs in the range 150<EW(m{AA})<550, providing a measurement of the solar GRS at 639+/-14m/s, consistent with the expected theoretical value on Earth of 633.1m/s. A final sample of about 98 weak Fe lines with EW<180m{AA} allows us to derive a mean global line shift of 638+/-6m/s in agreement with the theoretical solar GRS. These are the most accurate measurements of the solar GRS so far. Ultrastable spectrographs calibrated with the LFC over a larger spectral range, such as HARPS or ESPRESSO, together with a further improvement on the laboratory wavelengths, could provide a more robust measurement of the solar GRS and further tests for the 3D hydrodynamical models.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/641/A116
- Title:
- Titan middle atmosphere thermal field
- Short Name:
- J/A+A/641/A116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present a study of the seasonal evolution of Titan's thermal field and distributions of haze, C_2_H_2_, C_2_H_4_, C_2_H_6_, CH_3_C_2_H, C_3_H_8_, C_4_H_2_, C_6_H_6_, HCN, and HC_3_N from March 2015 (Ls=66{deg}) to September 2017 (Ls=93{deg}) (i.e., from the last third of northern spring to early summer). We analyzed thermal emission of Titan's atmosphere acquired by the Cassini Composite Infrared Spectrometer (CIRS) with limb and nadir geometry to retrieve the stratospheric and mesospheric temperature and mixing ratios pole-to-pole meridional cross sections from 5mbar to 50ubar (120-650km). The southern stratopause varied in a complex way and showed a global temperature increase from 2015 to 2017 at high-southern latitudes. Stratospheric southern polar temperatures, which were observed to be as low as 120K in early 2015 due to the polar night, showed a 30K increase (at 0.5mbar) from March 2015 to May 2017 due to adiabatic heating in the subsiding branch of the global overturning circulation. All photochemical compounds were enriched at the south pole by this subsidence. Polar cross sections of these enhanced species, which are good tracers of the global dynamics, highlighted changes in the structure of the southern polar vortex. These high enhancements combined with the unusually low temperatures (<120K) of the deep stratosphere resulted in condensation at the south pole between 0.1 and 0.03mbar (240-280km) of HCN, HC_3_N, C_6_H_6_ and possibly C4H2 in March 2015 (Ls=66{deg}). These molecules were observed to condense deeper with increasing distance from the south pole. At high-northern latitudes, stratospheric enrichments remaining from the winter were observed below 300km between 2015 and May 2017 (Ls=90{deg}) for all chemical compounds and up to September 2017 (Ls=93{deg}) for C_2_H_2_, C_2_H_4_, CH_3_C_2_H, C_3_H_8_, and C_4_H_2_. In September 2017, these local enhancements were less pronounced than earlier for C_2_H_2_, C_4_H_2_, CH_3_C_2_H, HC_3_N, and HCN, and were no longer observed for C_2_H_6_ and C_6_H_6_, which suggests a change in the northern polar dynamics near the summer solstice. These enhancements observed during the entire spring may be due to confinement of this enriched air by a small remaining winter circulation cell that persisted in the low stratosphere up to the northern summer solstice, according to predictions of the Institut Pierre Simon Laplace Titan Global Climate Model (IPSL Titan GCM). In the mesosphere we derived a depleted layer in C_2_H_2_, HCN, and C_2_H_6_ from the north pole to mid-southern latitudes, while C_4_H_2_, C_3_H_4_, C_2_H_4_, and HC_3_N seem to have been enriched in the same region. In the deep stratosphere, all molecules except C_2_H_4_ were depleted due to their condensation sink located deeper than 5mbar outside the southern polar vortex. HCN, C_4_H_2_, and CH_3_C_2_H volume mixing ratio (VMR) cross section contours showed steep slopes near the mid-latitudes or close to the equator, which can be explained by upwelling air in this region. Upwelling is also supported by the cross section of the C_2_H_4_ (the only molecule not condensing among those studied here) volume mixing ratio observed in the northern hemisphere. We derived the zonal wind velocity up to mesospheric levels from the retrieved thermal field. We show that zonal winds were faster and more confined around the south pole in 2015 (Ls=67-72{deg}) than later. In 2016, the polar zonal wind speed decreased while the fastest winds had migrated toward low-southern latitudes.
- ID:
- ivo://CDS.VizieR/J/AJ/157/120
- Title:
- TNOs and Centaurs observed within the DES
- Short Name:
- J/AJ/157/120
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Trans-Neptunian objects (TNOs) are a source of invaluable information to access the history and evolution of the outer solar system. However, observing these faint objects is a difficult task. As a consequence, important properties such as size and albedo are known for only a small fraction of them. Now, with the results from deep sky surveys and the Gaia space mission, a new exciting era is within reach as accurate predictions of stellar occultations by numerous distant small solar system bodies become available. From them, diameters with kilometer accuracies can be determined. Albedos, in turn, can be obtained from diameters and absolute magnitudes. We use observations from the Dark Energy Survey (DES) from 2012 November until 2016 February, amounting to 4292847 charge-coupled device (CCD) frames. We searched them for all known small solar system bodies and recovered a total of 202 TNOs and Centaurs, 63 of which have been discovered by the DES collaboration as of the date of submission. Their positions were determined using the Gaia Data Release 2 (Cat. I/345) as reference and their orbits were refined. Stellar occultations were then predicted using these refined orbits plus stellar positions from Gaia. These predictions are maintained, and updated, in a dedicated web service. The techniques developed here are also part of an ambitious preparation to use the data from the Large Synoptic Survey Telescope (LSST), that expects to obtain accurate positions and multifilter photometry for tens of thousands of TNOs.
- ID:
- ivo://CDS.VizieR/VI/155
- Title:
- Topocentric positions of Pluto
- Short Name:
- VI/155
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Catalog of 90 astrometric positions of Pluto have been compiled with Tycho-2 as a reference frame from photographic observations obtained at the Main Astronomical Observatory, National Academy of Sciences of Ukraine, Astronomical Observatory of the Kyiv Shevchenko National University, Research Institute Mykolaiv Astronomical Observatory and Baldone Observatory of the University of Latvia in 1961-1996. Astronegatives have been digitized with Epson Perfection V750 Pro and Epson Expression 10000XL commercial scanners in 16-bit grayscale with a resolution of 1200 dpi. (O-C) residuals obtained from the comparison with JPL PLU055/DE433 ephemeris are 0.09 ... 0.14 arcsec. Gallery of plate images used for catalog: http://gua.db.ukr-vo.org/catalog_gallery.php?catn=pluton_1961_1996
- ID:
- ivo://CDS.VizieR/J/other/KFNT/33.70
- Title:
- Topocentric positions of Saturn's moons
- Short Name:
- J/other/KFNT/33.
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A catalog of 1399 astrometric positions of Saturn's moons S2-S9 has been compiled with Tycho-2 as a reference frame from photographic observations obtained at the Main Astronomical Observatory, National Academy of Sciences of Ukraine, in 1961-1990. Astronegatives have been digitized with an Epson Expression 10000XL commercial scanner in 16-bit grayscale with a resolution of 1200 dpi. Reduction has been performed in the LINUX-MIDAS-ROMAFOT software supplemented with additional modules. The internal positional accuracy of the reduction is 0.09...0.23" for both coordinates and 0.27...0.37m for the photographic magnitudes of the Tycho-2 catalog. Gallery of plate images used for the catalog: http://gua.db.ukr-vo.org/catalog_gallery.php?catn=satmoons_1961_1990
- ID:
- ivo://CDS.VizieR/J/A+A/635/A156
- Title:
- Total lunar eclipse January 2019 spectra
- Short Name:
- J/A+A/635/A156
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Observations of the Earthshine o the Moon allow for the unique opportunity to measure the large-scale Earth atmosphere. Another opportunity is realized during a total lunar eclipse which, if seen from the Moon, is like a transit of the Earth in front of the Sun. We thus aim at transmission spectroscopy of an Earth transit by tracing the solar spectrum during the total lunar eclipse of January 21, 2019. Time series spectra of the Tycho crater were taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in its polarimetric mode in Stokes IQUV at a spectral resolution of 130000 (0.06{AA}). In particular, the spectra cover the red parts of the optical spectrum between 7419-9067{AA}. The spectrograph's exposure meter was used to obtain a light curve of the lunar eclipse. The brightness of the Moon dimmed by 10.75m during umbral eclipse. We found both branches of the O_2_ A-band almost completely saturated as well as a strong increase of H_2_O absorption during totality. A pseudo O_2_ emission feature remained at a wavelength of 7618{AA}, but it is actually only a residual from different P-branch and R-branch absorptions. It nevertheless traces the eclipse. The deep penumbral spectra show significant excess absorption from the NaI 5890{AA} doublet, the CaII infrared triplet around 8600{AA}, and the KI line at 7699{AA} in addition to several hyper-fine-structure lines of MnI and even from BaII. The detections of the latter two elements are likely due to an untypical solar center-to-limb eect rather than Earth's atmosphere. The absorption in CaII and KI remained visible throughout umbral eclipse. Our radial velocities trace a wavelength dependent Rossiter-McLaughlin eect of the Earth eclipsing the Sun as seen from the Tycho crater and thereby confirm earlier observations. A small continuum polarization of the O_2_ A-band of 0.12% during umbral eclipse was detected at 6.3. No line polarization of the O_2_ A-band, or any other spectral-line feature, is detected outside nor inside eclipse. It places an upper limit of 0.2% on the degree of line polarization during transmission through Earth's atmosphere and magnetosphere.
- ID:
- ivo://CDS.VizieR/J/A+A/654/A108
- Title:
- Triple-frequency meteor radar reflection coeff.
- Short Name:
- J/A+A/654/A108
- Date:
- 22 Feb 2022
- Publisher:
- CDS
- Description:
- Radar scattering from meteor trails depends on several poorly constrained quantities, such as electron line density, q, initial trail radius, r0, and ambipolar diffusion coefficient, D. The goal is to apply a numerical model of full wave backscatter to triple frequency echo measurements to validate theory and constrain estimates of electron radial distribution, initial trail radius, and the ambipolar diffusion coefficient. A selection of 50 transversely polarized and 50 parallel polarized echoes with complete trajectory information were identified from simultaneous tri-frequency echoes recorded by the Canadian Meteor Orbit Radar (CMOR). The amplitude-time profile of each echo was fit to our model using three different choices for the radial electron distribution assuming a Gaussian, parabolic exponential, and 1-by-r^2^ electron line density model. The observations were manually fit by varying, q, r0, and D per model until all three synthetic echo-amplitude profiles at each frequency matched observation. The Gaussian radial electron distribution was the most successful at fitting echo power profiles, followed by the 1/r^2^. We were unable to fit any echoes using a profile where electron density varied from the trail axis as an exponential-parabolic distribution. While fewer than 5% of all examined echoes had self-consistent fits, the estimates of r0 and D as a function of height obtained were broadly similar to earlier studies, though with considerable scatter. Most meteor echoes are found to not be described well by the idealized full wave scattering model.
- ID:
- ivo://CDS.VizieR/J/AJ/153/116
- Title:
- Trojan asteroids in the Kepler campaign 6 field
- Short Name:
- J/AJ/153/116
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We report on a Kepler spacecraft survey during the K2 mission to characterize the rotational properties of 56 Trojan asteroids in the L4 cloud. More than one rotational period was observed for 51 of these targets, allowing for well constrained lightcurve rotation periods and amplitudes, five of which are found to be in conflict with previously published values. We find ~10% of objects have rotational periods longer than 100hr, an excess of slow rotators 10 times larger than suggested from the literature. Investigation of the rotational frequencies of our Kepler sample when combined with high-quality lightcurves in the literature reveals the distribution of rotational frequencies is non-Maxwellian even when consideration is given to size-dependent variations in rotational rate. From investigation of lightcurve shapes and amplitudes, we estimate the binary fraction within the Trojan population to be ~6%-36% depending on the methodology utilized to identify binary candidates.
- ID:
- ivo://CDS.VizieR/J/A+AS/138/247
- Title:
- Uranian satellites 1995-1998
- Short Name:
- J/A+AS/138/247
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Astrometric positions of the five largest Uranian satellites from 750 CCD frames taken at the oppositions of 1995 through 1998 are presented. The images were obtained over 35 nights. Observed positions are compared with the calculated positions from GUST86. The standard deviations are better than 0.05" for the four largest satellites and 0.08" for Miranda.
190. Uranian satellites
- ID:
- ivo://CDS.VizieR/J/A+AS/113/557
- Title:
- Uranian satellites
- Short Name:
- J/A+AS/113/557
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Astrometric positions of the five largest satellites are given for the oppositions of Uranus for the years 1989 to 1994. These positions were measured on 368 CCD frames obtained at the Cassegrain focus of a 1.6-m reflector. They are compared with the theoretically calculated positions from GUST86 (Laskar & Jacobson 1987). The observed minus calculated residuals referred to Oberon have standard deviations of the order of 0.05" for the three greatest Uranian satellites and 0.07" for Miranda. These residuals are comparable to the best available in the literature.