- ID:
- ivo://CDS.VizieR/J/A+A/548/A56
- Title:
- X-shooter spectra of 12 young stellar objects
- Short Name:
- J/A+A/548/A56
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We present high-quality, medium-resolution X-shooter/VLT spectra in the range 300-2500nm for a sample of 12 very low mass stars in the {sigma} Orionis cluster. The sample includes eight stars with evidence of disks from Spitzer and four without disks, with masses ranging from 0.08 to 0.3M_{sun}_. The aim of this first paper is to investigate the reliability of the many accretion tracers currently used to measure the mass accretion rate in low-mass young stars and the accuracy of the correlations between these secondary tracers (mainly accretion line luminosities) found in the literature. We use our spectra to measure the accretion luminosity from the continuum excess emission in the UV and visual; the derived mass accretion rates range from 10^-9^M_{sun}_/yr down to 5x10^-11^M_{sun}_/yr, allowing us to investigate the behavior of the accretion-driven emission lines in very low mass accretion rate regimes. We compute the luminosity of ten accretion-driven emission lines from the UV to the near-IR, which are all obtained simultaneously. In general, most of the secondary tracers correlate well with the accretion luminosity derived from the continuum excess emission. We recompute the relationships between the accretion luminosities and the line luminosities, and we confirm the validity of the correlations given in the literature, with the possible exception of H{alpha}. Metallic lines, such as the CaII IR triplet or the NaI line at 589.3nm, show a larger dispersion. When looking at individual objects, we find that the hydrogen recombination lines, from the UV to the near-IR, give good and consistent measurements of L_acc_ that often better agree than the uncertainties introduced by the adopted correlations. The average L_acc_ derived from several hydrogen lines, measured simultaneously, have a much reduced error. This suggests that some of the spread in the literature correlations may be due to the use of nonsimultaneous observations of lines and continuum. Three stars in our sample deviate from this behavior, and we discuss them individually.
Number of results to display per page
Search Results
- ID:
- ivo://CDS.VizieR/J/A+A/551/A107
- Title:
- X-shooter spectra of 24 young stellar objects
- Short Name:
- J/A+A/551/A107
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The lack of knowledge of photospheric parameters and the level of chromospheric activity in young low-mass pre-main sequence stars introduces uncertainties when measuring mass accretion rates in accreting (Class II) young stellar objects. A detailed investigation of the effect of chromospheric emission on the estimates of mass accretion rate in young low-mass stars is still missing. This can be undertaken using samples of young diskless (Class III) K and M-type stars. Our is to measure the chromospheric activity of Class III pre main sequence stars to determine its effect on the estimates of the accretion luminosity (Lacc) and mass accretion rate (dMacc/dt) in young stellar objects with disks. Using VLT/X-shooter spectra, we analyzed a sample of 24 nonaccreting young stellar objects of spectral type between K5 and M9.5. We identified the main emission lines normally used as tracers of accretion in Class II objects, and we determined their fluxes in order to estimate the contribution of the chromospheric activity to the line luminosity. We have used the relationships between line luminosity and accretion luminosity derived in the literature for Class II objects to evaluate the impact of chromospheric activity on the accretion rate measurements. We find that the typical chromospheric activity would bias the derived accretion luminosity by L_acc,noise_<10^-3^L_{sun}_, with a strong dependence on the Teff of the objects. The noise on Macc depends on stellar mass and age, and the typical values of log(M_acc,noise_) range between ~-9.2 to -11.6M_{sun}_/yr. Values of L_acc_<10^-3^L_{sun}_ obtained in accreting low-mass pre main sequence stars through line luminosity should be treated with caution because the line emission may be dominated by the contribution of chromospheric activity.
- ID:
- ivo://CDS.VizieR/J/A+A/602/A33
- Title:
- X-Shooter spectroscopy of YSOs in Lupus
- Short Name:
- J/A+A/602/A33
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- A homogeneous determination of basic stellar parameters of young stellar object (YSO) candidates is needed to confirm their pre-main sequence evolutionary stage, membership to star forming regions (SFRs), and to get reliable values of the quantities related to chromospheric activity and accretion. We used the code ROTFIT and synthetic BT-Settl spectra for the determination of the atmospheric parameters (Teff and logg), the veiling (r), the radial (RV) and projected rotational velocity (vsini), from X-Shooter spectra of 102 YSO candidates (95 of infrared Class II and seven Class III) in the Lupus SFR. The spectral subtraction of inactive templates, rotationally broadened to match the vsini of the targets, enabled us to measure the line fluxes for several diagnostics of both chromospheric activity and accretion, such as H{alpha}, H{beta}, CaII, and NaI lines. We have shown that 13 candidates can be rejected as Lupus members based on their discrepant RV with respect to Lupus and/or the very low logg values. At least 11 of them are background giants, two of which turned out to be lithium-rich giants. Regarding the members, we found that all ClassIII sources have H{alpha} fluxes compatible with a pure chromospheric activity, while objects with disks lie mostly above the boundary between chromospheres and accretion. YSOs with transitional disks displays both high and low H{alpha} fluxes. We found that the line fluxes per unit surface are tightly correlated with the accretion luminosity (L_acc_) derived from the Balmer continuum excess. This rules out that the relationships between L_acc_ and line luminosities found in previous works are simply due to calibration effects. We also found that the CaII-IRT flux ratio is always small, indicating an optically thick emission source. The latter can be identified with the accretion shock near the stellar photosphere. The Balmer decrement reaches instead, for several accretors, high values typical of optically thin emission, suggesting that the Balmer emission originates in different parts of the accretion funnels with a smaller optical depth.
- ID:
- ivo://CDS.VizieR/J/A+A/570/A126
- Title:
- XShooter spectrum of 4 BL Lacs
- Short Name:
- J/A+A/570/A126
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We aim to determine the redshift (or stringent lower limits) of a number of bright BL Lacs objects. We secured optical and near-infrared medium resolution spectra of four bright BL Lac objects of unknown redshift using the spectrograph X-Shooter at the ESO-VLT. In spite of the high quality of the spectra and the extended spectral range of the observations, we have not detected intrisic spectral features for these sources. However, we are able to provide strigent lower limits to their redshift. In particular, for the two TeV sources PG 1553+113 and H 1722+119, we infer z>0.30 and z>0.35 respectively. We also detect an intervening CaII absorption doublet in the spectrum of MH 2136-428 that is ascribed to the the halo of a nearby giant elliptical galaxy at a projected distance of ~100kpc. Under the hypothesis that all BL Lacs are hosted by a luminous bulge dominated galaxies, the presently spectroscopic observations of bright BL Lacs indicate that these objects are likely sources with extremely beamed nuclear emission. We present simulations to show under which circumstances it is possible to probe this hypothesis from the detection of very weak absorptions using the next generation of extremely large optical telescopes.
- ID:
- ivo://CDS.VizieR/J/A+A/627/A138
- Title:
- XSL atmospheric parameters
- Short Name:
- J/A+A/627/A138
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The X-shooter Spectral Library (XSL) is an empirical stellar library at medium spectral resolution covering the wavelength range from 3000 to 24800 angstrom. This library aims to provide a benchmark for stellar population studies. In this work, we present a uniform set of stellar atmospheric parameters, effective temperatures, surface gravities, and iron abundances for 754 spectra of 616 XSL stars. We used the full-spectrum fitting package ULySS with the empirical MILES library as reference to fit the ultraviolet-blue (UVB) and visible (VIS) spectra. We tested the internal consistency and we compared our results with compilations from the literature. The stars cover a range of effective temperature 2900<Teff<38000K, surface gravity 0<logg<5.7, and iron abundance -2.5<[Fe/H]<+1.0, with a couple of stars extending down to [Fe/H]=-3.9. The precisions of the measurements for the G- and K-type stars are 0.9%, 0.14, and 0.06 in Teff, log g and [Fe/H], respectively. For the cool giants with logg<1, the precisions are 2.1%, 0.21, and 0.22, and for the other cool stars these values are 1%, 0.14, and 0.10. For the hotter stars (Teff>6500K), these values are 2.6%, 0.20, and 0.10 for the three parameters.
- ID:
- ivo://CDS.VizieR/J/ApJ/855/75
- Title:
- 24 years monitoring of Sun and Sun-like stars
- Short Name:
- J/ApJ/855/75
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- We compare patterns of variation for the Sun and 72 Sun-like stars by combining total and spectral solar irradiance measurements between 2003 and 2017 from the SORCE satellite, Stromgren b, y stellar photometry between 1993 and 2017 from Fairborn Observatory, and solar and stellar chromospheric CaII H+K emission observations between 1992 and 2016 from Lowell Observatory. The new data and their analysis strengthen the relationships found previously between chromospheric and brightness variability on the decadal timescale of the solar activity cycle. Both chromospheric H+K and photometric b, y variability among Sun-like stars are related to average chromospheric activity by power laws on this timescale. Young active stars become fainter as their H+K emission increases, and older, less active, more Sun-age stars tend to show a pattern of direct correlation between photometric and chromospheric emission variations. The directly correlated pattern between total solar irradiance and chromospheric Ca ii emission variations shown by the Sun appears to extend also to variations in the Stromgren b, y portion of the solar spectrum. Although the Sun does not differ strongly from its stellar age and spectral class mates in the activity and variability characteristics that we have now studied for over three decades, it may be somewhat unusual in two respects: (1) its comparatively smooth, regular activity cycle, and (2) its rather low photometric brightness variation relative to its chromospheric activity level and variation, perhaps indicating that facular emission and sunspot darkening are especially well-balanced on the Sun.
- ID:
- ivo://CDS.VizieR/J/AJ/161/157
- Title:
- 10 years radial-velocity monitoring of Vega with TRES
- Short Name:
- J/AJ/161/157
- Date:
- 18 Jan 2022
- Publisher:
- CDS
- Description:
- We present an analysis of 1524 spectra of Vega spanning 10yr, in which we search for periodic radial-velocity variations. A signal with a periodicity of 0.676day and a semi-amplitude of ~10m/s is consistent with the rotation period measured over much shorter time spans by previous spectroscopic and spectropolarimetric studies, confirming the presence of surface features on this A0 star. The activity signal appears to evolve on long timescales, which may indicate the presence of failed fossil magnetic fields on Vega. TESS data reveal Vega's photometric rotational modulation for the first time, with a total amplitude of only 10ppm. A comparison of the spectroscopic and photometric amplitudes suggests that the surface features may be dominated by bright plages rather than dark spots. For the shortest orbital periods, transit and radial-velocity injection recovery tests exclude the presence of transiting planets larger than 2R{Earth} and most non- transiting giant planets. At long periods, we combine our radial velocities with direct imaging from the literature to produce detection limits for Vegan planets and brown dwarfs out to distances of 15au. Finally, we detect a candidate radial-velocity signal with a period of 2.43days and a semi-amplitude of 6m/s. If caused by an orbiting companion, its minimum mass would be ~20M{Earth}; because of Vega's pole-on orientation, this would correspond to a Jovian planet if the orbit is aligned with the stellar spin. We discuss the prospects for confirmation of this candidate planet.
- ID:
- ivo://CDS.VizieR/J/ApJ/749/177
- Title:
- Yellow and red supergiants in the LMC
- Short Name:
- J/ApJ/749/177
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Due to their transitionary nature, yellow supergiants (YSGs) provide a critical challenge for evolutionary modeling. Previous studies within M31 and the Small Magellanic Cloud show that the Geneva evolutionary models do a poor job at predicting the lifetimes of these short-lived stars. Here, we extend this study to the Large Magellanic Cloud (LMC) while also investigating the galaxy's red supergiant (RSG) content. This task is complicated by contamination by Galactic foreground stars that color and magnitude criteria alone cannot weed out. Therefore, we use proper-motions and the LMC's large systemic radial velocity (~278km/s) to separate out these foreground dwarfs. After observing nearly 2000 stars, we identified 317 probable YSGs, 6 possible YSGs, and 505 probable RSGs. Foreground contamination of our YSG sample was ~80%, while that of the RSG sample was only 3%. By placing the YSGs on the Hertzsprung-Russell diagram and comparing them against the evolutionary tracks, we find that new Geneva evolutionary models do an exemplary job at predicting both the locations and the lifetimes of these transitory objects.
- ID:
- ivo://CDS.VizieR/J/ApJ/703/441
- Title:
- Yellow supergiants in M31
- Short Name:
- J/ApJ/703/441
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- The yellow supergiant (F- and G-type) content of nearby galaxies can provide a critical test of stellar evolution theory, bridging the gap between the hot, massive stars and the cool red supergiants. But, this region of the color-magnitude diagram is dominated by foreground contamination, requiring membership to somehow be determined. Fortunately, the large negative systemic velocity of M31, coupled to its high rotation rate, provides the means for separating the contaminating foreground dwarfs from the bona fide yellow supergiants within M31. We obtained radial velocities of ~2900 individual targets within the correct color-magnitude range corresponding to masses of 12M_{sun}_ and higher. A comparison of these velocities to those expected from M31's rotation curve reveals 54 rank-1 (near certain) and 66 rank-2 (probable) yellow supergiant members, indicating a foreground contamination >=96%. We expect some modest contamination from Milky Way halo giants among the remainder, particularly for the rank-2 candidates, and indeed follow-up spectroscopy of a small sample eliminates four rank 2's while confirming five others.
- ID:
- ivo://CDS.VizieR/J/ApJ/877/60
- Title:
- YMGs. I. Young binaries & lithium-rich stars
- Short Name:
- J/ApJ/877/60
- Date:
- 21 Oct 2021
- Publisher:
- CDS
- Description:
- Young stars in the solar neighborhood serve as nearby probes of stellar evolution and represent promising targets to directly image self-luminous giant planets. We have carried out an all-sky search for late-type (~K7-M5) stars within 100pc selected primarily on the basis of activity indicators from the Galaxy Evolution Explorer and ROSAT. Approximately 2000 active and potentially young stars are identified, of which we have followed up over 600 with low-resolution optical spectroscopy and over 1000 with diffraction-limited imaging using Robo-AO at the Palomar 1.5m telescope. Strong lithium is present in 58 stars, implying ages spanning ~10-200Myr. Most of these lithium-rich stars are new or previously known members of young moving groups including TWA, {beta}Pic, Tuc-Hor, Carina, Columba, Argus, ABDor, Upper Centaurus Lupus, and Lower Centaurus Crux; the rest appear to be young low-mass stars without connections to established kinematic groups. Over 200 close binaries are identified down to 0.2"-the vast majority of which are new-and will be valuable for dynamical mass measurements of young stars with continued orbit monitoring in the future.